1.双连通分量:对于一个无向图,其边/点连通度大于1,满足任意两点之间,能通过两条或两条以上没有任何重复边的路到达的图,即删掉任意边/点后,图仍是连通的 2.分类: 1)点双连通图:点连通度大于 1 的图 2)边双连通图:边连通度大于 1 的图 【原理】 1.求点双连通分量 求点双连通分量可以在求割点的同...
高通公司申请具有L2UE到网络中继的双连通性移动性管理专利,可对应于第一实体改变和第二实体改变 金融界2024年1月16日消息,据国家知识产权局公告,高通股份有限公司申请一项名为“具有L2UE到网络中继的双连通性移动性管理“,公开号CN117413565A,申请日期为2021年6月。专利摘要显示,远程UE可向源主网络实体或目标主...
金融界2024年1月16日消息,据国家知识产权局公告,高通股份有限公司申请一项名为“具有L2UE到网络中继的双连通性移动性管理“,公开号CN117413565A,申请日期为2021年6月。 专利摘要显示,远程UE可向源主网络实体或目标主网络实体中的至少一者传送对第一实体改变和第二实体改变的指示。该远程UE可在与该目标主网络实体的...
基于这些想法,我们来介绍如何用 Topology Tree 维护平面图边双连通性。我们的出发点和之前一致,通过维护生成树中哪些树边被非树边覆盖了来维护双连通性。 以下用小写字母代表树上的节点,大写字母代表 Topology Tree 中的 cluster 节点,如果我们用小写字母(比如u,v等) 指代了 Topology Tree 中的某个节点,那就是树...
类似地,我们可以定义有向图中的边双连通性:如果在删除任意一条边后u,v仍强连通,则称它们是边双连通的。容易看出边双连通具有传递性,于是一个极大的边双连通子图就称为边双连通分量。 与无向图不同的是,我们不能像无向图一样把割边全部删除。由于有向图的支配性有两个方向,删除一个方向的支配边会对另一...
高通公司取得双连通性传输技术专利,实现无线通信的方法、系统和设备的优化 金融界2024年4月1日消息,据国家知识产权局公告,高通股份有限公司取得一项名为“双连通性传输技术“的专利,授权公告号CN112314011B,申请日期为2019年6月。专利摘要显示,描述了用于无线通信的方法、系统和设备。用户装备(UE)可接收在交叠...
高通公司申请双连通性架构和设立规程专利,数据可通过副连接进行传输 金融界2024年1月16日消息,据国家知识产权局公告,高通股份有限公司申请一项名为“双连通性架构和设立规程“,公开号CN117413606A,申请日期为2021年6月。专利摘要显示,远程UE可检测用于与第一网络实体和第二网络实体通信的双连通性配置的一个或多...
金融界2024年1月16日消息,据国家知识产权局公告,高通股份有限公司申请一项名为“具有L2UE到网络中继的双连通性移动性管理“,公开号CN117413565A,申请日期为2021年6月。 专利摘要显示,远程UE可向源主网络实体或目标主网络实体中的至少一者传送对第一实体改变和第二实体改变的指示。该远程UE可在与该目标主网络实体的...
1.割点:无向图中,一个点,去掉该点之后,图不再联通(分为>=2的几个连通分量),该点就是割点 2.桥:也叫做割边,去掉该边之后,图不再联通。 3.点的双连通图:针对的是无向图,没有割点的无向图就是点的双连通图 4.点的双连通分量:也叫做重连通分量(块),就是图中的一个不含有割点的连通分量。也就...