卷积层来替代全连接层,从而使空间信息能够自然传递到后面的层中去。图1对比了NiN同AlexNet和VGG等网络在结构上的主要区别。 NiN块是NiN中的基础块。它由一个卷积层加两个充当全连接层的 卷积层串联而成。其中第一个卷积层的超参数可以自行设置,而第二和第三个卷积层的超参数一般是固定的。 下面我们定义一个NiN...
Lenet 是一系列网络的合称,包括 Lenet1 - Lenet5,由 Yann LeCun 等人在 1990 年《Handwritten Digit Recognition with a Back-Propagation Network》中提出,是卷积神经网络的 HelloWorld。LeNet展示了通过梯度下降训练卷积神经网络可以达到手写数字识别在当时最先进的结果。这个奠基性的工作第一次将卷积神经网络推上...
简介: 【从零开始学习深度学习】27.卷积神经网络之VGG11模型介绍及其Pytorch实现【含完整代码】 AlexNet在LeNet的基础上增加了3个卷积层。但AlexNet对卷积窗口、输出通道数和构造顺序均做了大量的调整。虽然AlexNet模型表明深度卷积神经网络可以取得出色的结果,但并没有提供相应规则以指导后来的研究者如何设计新的网络。
2 原理介绍【CNN(卷积神经网络)和LSTM(长短期记忆网络)】 3 具体案例及代码分析 3.1 天气识别3.2 3.2 股票预测 4 结果展示 5 出现的问题和解决办法 6 参考文献 1)机器学习基本分类:监督学习、半监督学习、无监督学习、强化学习 2)机器学习根据预测任务的不同,可分为:分类问题、回归问题、标注问题 3)相关名词:...
深度学习之卷积神经网络中常用模型评估指标(混淆矩阵,精确率,召回率,特异度计算方法): 混淆矩阵,精确率,召回率,特异度作为卷积神经网络的模型性能评价指标,它们的计算和绘制具有非常重要的意义,特别是在写论文的时候,我们往往需要这些指标来证明我们模型的优异性,这里给出相应的代码方便大家计算和绘制自己的混淆矩阵和...
卷积网络:卷积层 + 激活层relu+ 池化层max_pool组成 神经网络:线性变化 + 激活层relu 神经网络: 线性变化(获得得分值) 代码说明: 代码主要有三部分组成 第一部分: 数据读入 第二部分:模型的构建,用于生成loss和梯度值 第三部分:将数据和模型输入,使用batch_size数据进行模型参数的训练 ...
深度学习-卷积神经网络-实例及代码2(初级)—利用Tensorflow和mnist数据集训练简单的深度网络模型实现手写数字识别 论文Lecun-1998和其中提出的LeNet5模型是深度卷积网络CNN模型的开山之作,其计算机视觉-图像分类领域的重要性不言而喻。在本文实例中,我们利用Tensorflow和mnist数据集学习LeNet5模型的实现与训练,对手写数字...
猫狗识别的代码:主要分为3个部分, 第一部分:数据的准备 第二部分:构造卷积神经网络,进行模型的训练 第三部分:使用saver.restore加载训练好的参数,进行模型的预测。 第一部分:数据的准备,构建read_train_data函数 第一步:输入的参数是文件的地址,图片的大小(进行图像的矩阵变换),标签,验证集的比例 ...
7.6 卷积神经网络代码实现书名: 破解深度学习(基础篇):模型算法与实现作者名: 瞿炜 李力 杨洁本章字数: 2767字更新时间: 2024-11-14 15:57:31首页 书籍详情 目录 听书 自动阅读摸鱼模式 加入书架 字号 背景 手机阅读 举报 上QQ阅读APP看后续精彩内容 下载QQ阅读APP,第一时间看更新 登录订阅本章 >...
Omkar Parkhi 在 2015 年题为《深度人脸识别》的论文中描述了 VGGFace 模型。该论文的一大贡献是阐述了如何开发一个庞大的训练数据集,用于训练基于现代卷积神经网络的人脸识别系统,使其能与 Facebook 和 Google 用于训练模型的大型数据集相竞争。此数据集后续成为开发深度 CNN 以完成人脸识别和验证等任务的基础,经...