求导的公式 相关知识点: 试题来源: 解析.常用导数公式 1.y=c(c为常数) y'=0 2.y=x^n y'=nx^(n-1) 3.y=a^x y'=a^xlna y=e^x y'=e^x 4.y=logax y'=logae/x y=lnx y'=1/x 5.y=sinx y'=cosx 6.y=cosx y'=-sinx 7.y=tanx y'=1/cos^2x...
以下是18个基本导数公式(y:原函数;y':导函数):1、y=c,y=0(c为常数)2、y=xxμ,y'=μxμ负1(μ为常数且μ不等于0)。3。y=aAx,y'=aAxIna。y=eAx,y'=eAx。4、y=logax,y'=1/(xina)(a>0且a=1);y=Inx,y'=1/x。5、y=sinx,y'=cosx。6、y=cosx,y'=负sinx。7、y=tanx,y'=(secx...
求导公式:y=c(c为常数) y'=0、y=x^n y'=nx^(n-1) ;运算法则:加(减)法则[f(x)+g(x)]'=f(x)'+g(x)'。 1导数公式 1).y=a^x y'=a^xlna y=e^x y'=e^x 2).y=logax y'=logae/x y=lnx y'=1/x 3).y=sinx y'=cosx 4).y=cosx y'=-sinx 5).y=tanx y'=1/cos^2x...
一、四则运算求导法则1. 加法求导法则:(u+v)'=u'+v'2. 减法求导法则:(u-v)'=u'-v'3. 乘法求导法则:(uv)'=u'v+uv'4. 除法求导法则:(u/v)'=(u'v-uv')/v² 二、导数的计算方法1. 直接求导法:对于函数f(x),如果f'(x)存在,则直接计算f'(x)。2. 复合函数求导法:对于复合函数...
1.求导公式 -常数函数求导公式:若(y = C)((C)为常数),则(y^prime=0)。-证明:根据导数的定义(y^prime=limlimits_{Delta xrightarrow0}frac{f(x + Delta x)-f(x)}{Delta x}),对于(y = C),(f(x)=C),(f(x+Delta x)=C),所以(y^prime=limlimits_{Delta xrightarrow0}frac{C -...
求导公式表如下:1、(sinx)'=cosx,即正弦的导数是余弦。2、(cosx)'=-sinx,即余弦的导数是正弦的相反数。3、(tanx)'=(secx)^2,即正切的导数是正割的平方。4、(cotx)'=-(cscx)^2,即余切的导数是余割平方的相反数。5、(secx)'=secxtanx,即正割的导数是正割和正切的积。6、(cscx)'=-cscxcotx,即余割...
基本初等函数求导公式:1、y=c y'=0;2、y=α^μ y'=μα^(μ-1);3、y=a^x y'=a^x lna;y=e^x y'=e^x;4、y=loga,x y'=loga,e/x;y=lnx y'=1/x;5、y=sinx y'=cosx。 6、y=cosx y'=-sinx 7、y=tanx y'=(secx)^2=1/(cosx)^2 ...
后面剩余的公式,我们可以借助导数的四则运算法则、复合函数求导法则、反函数求导法则来得出。 1、导数四则运算法则 借助这个法则,我们以除法作为例子,试着推导tanx的导数公式: 类似的,可以推出16大公式中的四个公式: 2、复合函数求导法则 我们可以对指数函数用这个法则求导: ...
23. 参数方程的导数公式:如果x=f(t), y=g(t)是由参数t表示的函数,则(dy/dx)'=g'(t)/f'(t) 24. 隐函数的导数公式:如果F(x,y)=0确定了y作为x的隐函数,则(dy/dx)=-F'_x/F'_y 以上就是24个基本求导公式,考研数学中还有许多其他的求导方法和技巧需要掌握。希望考生能够认真复习,理解掌握,并...