模糊C均值(Fuzzy-c means,FCM)聚类算法是一种柔性划分的聚类方法,通过计算样本的隶属度矩阵使得被划分到同一簇的对象之间相似度最大,而不同簇之间的相似度最小。FCM聚类算法是多种基于目标函数的模糊聚类算法中应用最为广泛的一种聚类方法。定义 聚类是一个将数据集中在某些方面相似的数据成员进行分类组织的过程...
模糊C均值聚类算法(Fuzzy C-Means, FCM)。 1. 算法概述 模糊C均值聚类算法是一种经典的模糊聚类算法,用于无监督学习中的数据聚类问题。它通过为每个数据点分配模糊隶属度,将数据点划分到不同的聚类中心。与传统的硬聚类算法不同,模糊C均值聚类允许数据点同时属于多个聚类,因此对于存在模糊性的数据集有很好的适应性。
算法原理 模糊c-均值聚类算法 fuzzy c-means algorithm (FCMA)或称(FCM)。在众多模糊聚类算法中,模糊C-均值(FCM)算法应用最广泛且较成功,它通过优化目标函数得到每个样本点对所有类中心的隶属度,从而决定样本点的类属以达到自动对样本数据进行分类的目的。 先来讲讲这个算法的名字噢,什么叫Fuzzy,...
模糊就是不确定。若把20岁作为确定是否年轻的标准,则21岁是不年轻。生活当中,21也很年轻,可以使用模糊的概念的来理解,即0.8属于年轻,0.2属于不年轻。这里0.8和0.2不是概率,而指的是相似的程度,把这种一个样本属于结果的这种相似的程度称为样本的隶属度,一般用u表示,表示一个样本相似于不同结果的一个程度指标。
此示例演示如何对二维数据执行模糊 c均值聚类分析。模糊 c 均值 (FCM) 是一种数据聚类技术,其中数据集被分组为N个聚类,数据集中的每个数据点在一定程度上属于每个聚类。例如,靠近群集中心的数据点在该群集中将具有较高的成员资格,而远离群集中心的另一个数据点对该群集的成员身份级别较低。从对聚类中心的随机初始...
本文的代码与数据地址已上传至github:https://github.com/helloWorldchn/MachineLearning 一、FCM算法简介 1、模糊集理论 L.A.Zadeh在1965年最早提出模糊集理论,在该理论中,针对传统的硬聚类算法其隶属度值非0即1的严格隶属关系,使用模糊
摘要:使用Intel Parallel Amplifier高性能工具,针对模糊C均值聚类算法在多核平台的性能问题,找出串行程序的热点和并发性,提出并行化设计方案。基于Intel并行库TBB(线程构建模块)和OpenMP运行时库函数,对多核平台下的串行程序进行循环并行化和任务分配的并行化设计。
摘要:针对模糊C-均值聚类算法分割图像时容易产生模糊边缘的缺点,提出了一种结合图像梯度和模糊C-均值聚类的图像分割方法。该方法利用图像梯度反映出来的目标边界,对由模糊C-均值聚类所获得的聚类区域进行分割,把因模糊性而划分到目标区域的像素点与目标区域进行分离,同时利用区域增长方法找出干扰区域并删除。将该算法应用...
模糊c 均值聚类算法基于模糊集合理论,将每个数据点分配到不同的聚类中心,而不是像 k-means 算法一样将数据点硬性地分配到最近的聚类中心。算法的核心是定义每个数据点属于每个聚类中心的权重,即模糊度。 具体而言,模糊 c 均值聚类算法的步骤如下: 1.初始化聚类中心。从输入数据中随机选择一些数据作为初始聚类中心。