算法原理 模糊c-均值聚类算法 fuzzy c-means algorithm (FCMA)或称(FCM)。在众多模糊聚类算法中,模糊C-均值(FCM)算法应用最广泛且较成功,它通过优化目标函数得到每个样本点对所有类中心的隶属度,从而决定样本点的类属以达到自动对样本数据进行分类的目的。 先来讲讲这个算法的名字噢,什么叫Fuzzy,...
1、模糊集理论 L.A.Zadeh在1965年最早提出模糊集理论,在该理论中,针对传统的硬聚类算法其隶属度值非0即1的严格隶属关系,使用模糊集合理论,将原隶属度扩展为 0 到 1 之间的任意值,一个样本可以以不同的隶属度属于不同的簇集,从而极大提高了聚类算法对现实数据集的处理能力,由此模糊聚类出现在人们的视野。FCM...
FCM(fuzzy c-means) 模糊c均值聚类融合了模糊理论的精髓。相较于k-means的硬聚类,模糊c提供了更加灵活的聚类结果。因为大部分情况下,数据集中的对象不能划分成为明显分离的簇,指派一个对象到一个特定的簇有些生硬,也可能会出错。故,对每个对象和每个簇赋予一个权值,指明对象属于该簇的程度。当然,基于概率的方法...
此示例演示如何对二维数据执行模糊 c 均值聚类分析。模糊 c 均值 (FCM) 是一种数据聚类技术,其中数据集被分组为N个聚类,数据集中的每个数据点在一定程度上属于每个聚类。例如,靠近群集中心的数据点在该群集中将具有较高的成员资格,而远离群集中心的另一个数据点对该群集的成员身份级别较低。从对聚类中心的随机初始...
1、 模糊C均值聚类算法的实现研究背景 模糊聚类分析算法大致可分为三类 1)分类数不定,根据不同要求对事物进行动态聚类,此类方法是基于模糊等价矩阵聚类的,称为模糊等价矩阵动态聚类分析法。 2)分类数给定,寻找出对事物的最佳分析方案,此类方法是基于目标函数聚类的,称为模糊C均值聚类。3)在摄动有意义的情况下,根据...
模糊的c均值聚类(FCM):模糊聚类算法,隶属度取[0,1],类内加权误差平方和最小化。 1.K-means聚类算法 先随机选取K个对象作为初始的聚类中心。然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。一旦全部对象都被分配了,每个聚类的聚...
模糊c均值聚类融合了模糊理论的精髓。相较于k-means的硬聚类,模糊c提供了更加灵活的聚类结果。因为大部分情况下,数据集中的对象不能划分成为明显分离的簇,指派一个对象到一个特定的簇有些生硬,也可能会出错。故,对每个对象和每个簇赋予一个权值,指明对象属于该簇的程度。当然,基于概率的方法也可以给出这样的权值...
模糊c-均值聚类算法 fuzzy c-means algorithm (FCMA)或称( FCM)。在众多模糊聚类算法中,模糊C-均值( FCM) 算法应用最广泛且较成功,它通过优化目标函数得到每个样本点对所有类中心的隶属度,从而决定样本点的类属以达到自动对样本数据进行分类的目的。
1、模糊C均值聚类法 1模糊C均值聚类法 很多分类问题中,分类对象之间没有明确的界限,往往具有这个类的特点,也有另一个类的特点。例如高与矮没有明确的界限,多高的人才是高人,可能每个人都有自己的判断。这类的问题,如果用传统的聚类方法(K均值聚类或系统聚类法)进行分类,把每个待分类的对象严格地划分到某个类中...