实际上论文的目的不是通过加入惩罚项直接训练一个很小的模型,而是通过这么一个惩罚,使得模型在训练时能够尽可能冗余,尽可能多样性低,这样在后续就可以更大程度低剪枝和量化编码。 缺点: 导致网络连接不规整,需要通过稀疏表达来减少内存占用,进而导致在前向传播时,需要大量条件判断和额外空间来标明0或非0参数位置,...
DL模型首先收集可用于决策过程的最全面和潜在相关的数据集。DL场景的设计是为了满足某些性能目标,以便在使用标记数据训练模型之后选择最合适的DL架构。 迭代训练过程优化不同的学习参数,这些参数将被“调整”,直到网络提供令人满意的性能水平。 在涉及的步骤中,有几个不确定因素需要加以量化。很明显的不确定性这些步骤...