模型压缩-模型蒸馏、模型剪枝、模型量化 一、模型蒸馏 1.1 蒸馏简介 知识蒸馏是指通过教师模型指导学生模型训练,通过蒸馏的方式让学生模型学习到教师模型的知识,最终使学生模型达到或媲美教师模型的准确度。 在模型压缩中,教师模型是一个预训练好的复杂的模型,而学生模型是一个规模较小的模型。如分类任务中,由训练好...
细粒度剪枝(fine-grained),向量剪枝(vector-level),核剪枝(kernel-level)方法在参数量与模型性能之间取得了一定的平衡,但是网络的拓扑结构本身发生了变化,需要专门的算法设计来支持这种稀疏的运算,被称之为非结构化剪枝。 而滤波器剪枝(Filter-level)只改变了网络中的滤波器组和特征通道数目,所获得的模型不需要专门的...
正常的均匀量化可以通过TensorFlow Lite Toolkit 或其他量化工具实现。 除此之外,还可以通过 均值聚类等量化操作获得更大的压缩比。读者可自行搜索相关文献或开源代码。 03 剪枝 模型剪枝是指去除模型参数中冗余或不重要的部分,这个过程与哺乳动物幼年神经突触消失的过程极为相似。 剪枝是提高推断效率的方法之一,它可以高...
例如,在资源受限的边缘设备上,剪枝和量化可能更为适用;而在需要保持模型高性能的场景中,蒸馏技术则更具优势。 精细调整参数:无论是剪枝、蒸馏还是量化,都需要精细调整相关参数以确保模型性能的优化。例如,在剪枝过程中需要评估不同剪枝策略对模型性能的影响;在蒸馏过程中需要选择合适的软标签温度参数等。 综合应用多种...
量化、剪枝、蒸馏,其实是通用的神经网络模型压缩技术,不是大语言模型专有的。 模型压缩的意义 通过压缩,模型文件会变小,其使用的硬盘空间也会变小,加载到内存或者显存时使用的缓存空间也会变小,并且模型的运行速度还可能会有一些提高。 通过压缩,使用模型将消耗更少的计算资源,这可以极大的扩展模型的应用场景,特别...
第一种情况是剪枝做得不够细致,这就会使得剪枝后的模型与剪枝前没有太大区别,无法达到预期中小体量高性能的效果。第二种情况就是剪枝得有点过了,一些权重值较高的参数被设置为0了,这就会让模型出现稀疏矩阵,从而大幅降低模型的性能。蒸馏 知识蒸馏是一种机器学习技术,旨在将大型、复杂的模型(通常称为教师...
1.1,模型压缩技术分类 工业界主流的模型压缩方法有:知识蒸馏(Knowledge Distillation,KD)轻量化模型架构(也叫紧凑的模型设计)、剪枝(Pruning)、量化(Quantization)。各个模型压缩方法总结如下: 二,知识蒸馏 一个复杂模型可由多个简单模型或者强约束条件训练得到。复杂模型特点是性能好,但其参数量大,计算效率低。小模型特...
蒸馏过程: 教师模型训练:首先训练一个高性能的教师模型。 知识提取:提取教师模型对数据的预测概率分布等关键信息。 学生模型训练:使用提取的知识训练学生模型,使其能够模仿教师模型的行为。 结语 量化、剪枝与蒸馏作为大模型压缩的三大法宝,各有千秋,相辅相成。通过综合运用这些技术,我们可以在保证模型性能的前提下,实...
模型剪枝:即移除对结果作用较小的组件 模型量化:比如将 float32 降到int8 知识蒸馏:将 teacher 的能力蒸馏到 student上,一般 student 会比 teacher 小。我们可以把一个大而深的网络蒸馏到一个小的网络,也可以把集成的网络蒸馏到一个小的网络上。 参数共享:通过共享参数,达到减少网络参数的目的 ...
对LLaMA 3.2 Vision: 90B模型进行量化、剪枝和蒸馏,涉及到模型的压缩和优化技术,以减少其计算量和内存占用。以下是实现这些步骤的一般流程: 1. 量化 (Quantization) 量化的目的是减少模型的精度(如从FP32到INT8),以降低模型大小和推理时间。常用的量化方法包括静态量化、动态量化和量化感知训练。