注意剪枝并非适合所有的模型,对于一些稀疏模型(大部份参数都为0或者接近于0),剪枝可能没什么效果;对于一些参数比较少的小型模型,剪枝可能导致模型性能的明显下降;对于一些高精度的任务或者应用,也不适合对模型进行剪枝,比如医疗诊断这种人命关天的事。 在实际运用剪枝技术时,通常需要综合考虑剪枝对模型运行速度的提升和...
知识蒸馏是指通过教师模型指导学生模型训练,通过蒸馏的方式让学生模型学习到教师模型的知识,最终使学生模型达到或媲美教师模型的准确度。 在模型压缩中,教师模型是一个预训练好的复杂的模型,而学生模型是一个规模较小的模型。如分类任务中,由训练好的教师模型在相同的数据下,通过将教师模型对样本的预测值作为学生模型...
细粒度剪枝(fine-grained),向量剪枝(vector-level),核剪枝(kernel-level)方法在参数量与模型性能之间取得了一定的平衡,但是网络的拓扑结构本身发生了变化,需要专门的算法设计来支持这种稀疏的运算,被称之为非结构化剪枝。 而滤波器剪枝(Filter-level)只改变了网络中的滤波器组和特征通道数目,所获得的模型不需要专门的...
例如,在资源受限的边缘设备上,剪枝和量化可能更为适用;而在需要保持模型高性能的场景中,蒸馏技术则更具优势。 精细调整参数:无论是剪枝、蒸馏还是量化,都需要精细调整相关参数以确保模型性能的优化。例如,在剪枝过程中需要评估不同剪枝策略对模型性能的影响;在蒸馏过程中需要选择合适的软标签温度参数等。 综合应用多种...
2. 量化原理 3. 感知训练量化-QAT 4. 训练后量化-PTQ/static/dynamic 4.1 动态量化 4.2 静态量化 5. 端侧量化推理部署 模型剪枝 1. 剪枝算法分类 2. 剪枝;流程 3. L1-norm剪枝算法 模型蒸馏 1. 知识蒸馏的方式 2. 知识蒸馏的方法 3.算法解读
第一种情况是剪枝做得不够细致,这就会使得剪枝后的模型与剪枝前没有太大区别,无法达到预期中小体量高性能的效果。第二种情况就是剪枝得有点过了,一些权重值较高的参数被设置为0了,这就会让模型出现稀疏矩阵,从而大幅降低模型的性能。蒸馏 知识蒸馏是一种机器学习技术,旨在将大型、复杂的模型(通常称为教师...
蒸馏过程: 教师模型训练:首先训练一个高性能的教师模型。 知识提取:提取教师模型对数据的预测概率分布等关键信息。 学生模型训练:使用提取的知识训练学生模型,使其能够模仿教师模型的行为。 结语 量化、剪枝与蒸馏作为大模型压缩的三大法宝,各有千秋,相辅相成。通过综合运用这些技术,我们可以在保证模型性能的前提下,实...
对LLaMA 3.2 Vision: 90B模型进行量化、剪枝和蒸馏,涉及到模型的压缩和优化技术,以减少其计算量和内存占用。以下是实现这些步骤的一般流程: 1. 量化 (Quantization) 量化的目的是减少模型的精度(如从FP32到INT8),以降低模型大小和推理时间。常用的量化方法包括静态量化、动态量化和量化感知训练。
正常的均匀量化可以通过TensorFlow Lite Toolkit 或其他量化工具实现。 除此之外,还可以通过 均值聚类等量化操作获得更大的压缩比。读者可自行搜索相关文献或开源代码。 03 剪枝 模型剪枝是指去除模型参数中冗余或不重要的部分,这个过程与哺乳动物幼年神经突触消失的过程极为相似。
通过给神经网络剪枝添加一个“规则”的约束,使得剪枝后的模型更加适合硬件计算,但这种方法通常会牺牲模型的准确率和压缩比。“模型优化(压缩)”在实践中非常常见,已成为标准步骤 剪枝和量化混合使用能达到最佳效果 结论: large-sparse models to consistently outperform small-dense models and achieve up...