通过比较牛顿法和梯度下降法的迭代公式,可以发现两者及其相似。海森矩阵的逆就好比梯度下降法的学习率参数alpha。牛顿法收敛速度相比梯度下降法很快,而且由于海森矩阵的的逆在迭代中不断减小,起到逐渐缩小步长的效果。牛顿法的缺点就是计算海森矩阵的逆比较困难,消耗时间和计算资源。因此有了拟牛顿法。·END·统计学...
1.牛顿法:是通过求解目标函数的一阶导数为0时的参数,进而求出目标函数最小值时的参数。 收敛速度很快。 海森矩阵的逆在迭代过程中不断减小,可以起到逐步减小步长的效果。 缺点:海森矩阵的逆计算复杂,代价比较大,因此有了拟牛顿法。 2.梯度下降法:是通过梯度方向和步长,直接求解目标函数的最小值时的参数。 越...
当f ff是一个正定二次函数时,牛顿法只需一次迭代就能直接跳到函数最小点,如果f ff不是一个二次真正但也能局部近似为正定二次时,牛顿法需要多次迭代。迭代更新近似函数和跳到近似函数最小点比梯度下降更快地到达临界点。这在接近局部极小点时是一个特别有用的性质,但在鞍点是有害的。 Hessian矩阵在地带过程中...
牛顿法收敛速度相比梯度下降法很快,而且由于海森矩阵的的逆在迭代中不断减小,起到逐渐缩小步长的效果。 牛顿法的缺点就是计算海森矩阵的逆比较困难,消耗时间和计算资源。因此有了拟牛顿法。
1.牛顿法:是通过求解目标函数的一阶导数为0时的参数,进而求出目标函数最小值时的参数。 收敛速度很快。 海森矩阵的逆在迭代过程中不断减小,可以起到逐步减小步长的效果。 缺点:海森矩阵的逆计算复杂,代价比较大,因此有了拟牛顿法。 2.梯度下降法:是通过梯度方向和步长,直接求解目标函数的最小值时的参数。
1.牛顿法:是通过求解目标函数的一阶导数为0时的参数,进而求出目标函数最小值时的参数。 收敛速度很快。 海森矩阵的逆在迭代过程中不断减小,可以起到逐步减小步长的效果。 缺点:海森矩阵的逆计算复杂,代价比较大,因此有了拟牛顿法。 2.梯度下降法:是通过梯度方向和步长,直接求解目标函数的最小值时的参数。
通过比较牛顿法和梯度下降法的迭代公式,可以发现两者及其相似。海森矩阵的逆就好比梯度下降法的学习率参数alpha。牛顿法收敛速度相比梯度下降法很快,而且由于海森矩阵的的逆在迭代中不断减小,起到逐渐缩小步长的效果。 牛顿法的优缺点总结: 优点:二阶收敛,收敛速度快; ...