根号下1-cos2x的不定积分根号下 答:根号下1一cos2x=(2sin^2x)^1/2=√2|sinx|,它的不定积分应该用分段函数来表达:当x∈[2kπ,2kπ]时sinx≥0,y=√2sinx,y的积分为一V2cosx;当x∈(2kπ一π,2kπ)时,sinx<0,y=-√2sinx,y的积分为V2cosx。
1+cos(2x)=1+(cosx^2-sinx^2)=(sinx^2+cosx^2)+(cosx^2-sinx^2)=2cosx^2 根号下1+cos(2x)=cosx * 根号2 不定积分=sinx * 根号2+c
1+cos(2x)=1+(cosx^2-sinx^2)=(sinx^2+cosx^2)+(cosx^2-sinx^2)=2cosx^2 根号下1+cos(2x)=cosx * 根号2 不定积分=sinx * 根号2+c
∫根号下(1-sin2x)dx = ∫根号下(cos^2x+sin^2x - 2sinx*cosx)dx =∫|cosx -sinx|dx = |sinx + cosx|+C 不定积分的性质: 一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。 若在有限区间[a,b]上只有有限个间断点且函数有界,则...
答案解析 查看更多优质解析 解答一 举报 1+cos(2x)=1+(cosx^2-sinx^2)=(sinx^2+cosx^2)+(cosx^2-sinx^2)=2cosx^2根号下1+cos(2x)=cosx * 根号2不定积分=sinx * 根号2+c 解析看不懂?免费查看同类题视频解析查看解答 相似问题 根号1+cos^2x的不定积分 高数定积分0到派 sinx乘根号下1+cos^...
在求解根号下1-sin²x的不定积分时,首先我们利用三角恒等变换将表达式简化。原表达式为根号下1-sin²x,根据二倍角公式,sin²x = (1 - cos2x)/2,代入原式得到根号下1 - (1 - cos2x)/2。化简得到根号下cos2x。接下来,我们引入换元积分法。令t = 2x,即dt = 2dx,dx...
第六行到第七行少乘了一个t
换元方法如下:令那么令t=sin2x,那么x={arcsint+2kπ2,x∈[2kπ−π2,2kπ+π2]−arcsint+...
对于定积分∫根号1+cos2xdx,当积分上限为π,积分下限时0,我们可以通过以下步骤求解。首先,我们知道cos2x=2cos²x-1。因此,∫√(1+cos2x)dx可以转换为∫√2|cosx|dx。接下来,我们可以将其分为两个积分区间(0,π/2)和(π/2,π)来求解。在(0,π/2)区间内,cosx为正,所以∫√(...
解析 不定积分的过程:(1+cosx)^2=1+2cosx+cos^2x=1/2cos2x+2cosx+3/2故其原函数为:1/4sin2x+2sinx+3/2x+a(常数)1/4sin2x+2sinx+3/2x+a(常数) 即为不定积分的答案结果一 题目 根号下1+COSX的平方怎么求积分详细解答一下 答案 不定积分的过程:(1+cosx)^2=1+2cosx+cos^2x=1/2cos2x...