注:根号1+x平方=(1+x^2)^(1/2)y'=1/[x+(1+x^2)^(1/2)]*[1+(1/2)*1/(1+x^2)^(1/2)*2x]=[1+x/(1+x^2)^(1/2)]/[x+(1+x^2)^(1/2)]分子分母同乘(1+x^2)^(1/2)得:y'=[(1+x^2)^(1/2)+x]/{[x+(1+x^2)^(1/2)]*(1+x^2)^(1/2)...
本题详细计算步骤如下图:
是y=ln[x√(1+x²)]?y'=[x√(1+x²)]'/[x√(1+x²)]={√(1+x²)+x*(1+x²)'/[2√(1+x²)]}/[x√(1+x²)]=[√(1+x²)+x²/√(1+x²)]/[x√(1+x²)]=[(1+x²)+x²]/√(1+x...
√(1+x)的导数为1/(2*√(1+x))。解:令f(x)=√(1+x),那么f'(x)=(√(1+x))'=((1+x)^(1/2))'=1/2*(1+x)^(-1/2)=1/(2*√(1+x))即√(1+x)的导数为1/(2*√(1+x))。
根据题意可以设y为导数结果:y=√(1+x^2)y'={1/[2√(1+x^2)] } d/dx ( 1+x^2)={1/[2√(1+x^2)] } (2x)=x/√(1+x^2)即原式导数为:x/√(1+x^2)
根号下(1-x的平方)的导数是什么 相关知识点: 试题来源: 解析 y=√(1-x^2)=(1-x^2)^(1/2), ∴y'=1/2·(1-x^2)^(1/2-1)·(1-x^2)' =(-2x)/[2√(1-x^2)] =-x/√(1-x^2). 分析总结。 根号下1x的平方的导数是什么...
设函数y=根号下1+x平方,求y的导数如题设函数y=根号下(1+x平方),求y的导数不是x的平方,我标题写的有歧义,特此更改,需要运算过程丫
记住根号x的导数 就是1/2 *1/根号x 或者根号看作1/2次方 即 x的1/2次方求导,得到1/2 *x的-1/2次方 那么这里的根号(1+x)得到的导数为1/2 *1/根号(1+x)
根据题意可以设y'为导数结果:y=√(1+x^2)y'={1/[2√(1+x^2)] } d/dx ( 1-x^2)={1/[2√(1-x^2)] } (-2x)=-x/√(1-x^2)即原式导数为:-x/√(1-x^2)
=x/√(1+x^2)。相关内容解释:导数(Derivative)是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。导数实质上就是一个求极限的过程,导数的四则运算法则来源于...