张量(tensor) 超过两维的数组叫做张量。 在某些情况下,我们会讨论坐标超过两维的数组,一般的,一个数组中的元素分布在若干维坐标的规则网格中,我们称之为张量。我们使用字体 A 来表示张量“A”。张量A中坐标为(i,j,k) 的元素记作 Ai,j,k. 四者之间关系 标量是0阶张量,向量是一阶张量。 举例: 标量就...
标量(scalar)是0阶张量,向量(vector)是一阶张量,矩阵(matrix)是二阶张量 标量就是知道棍子的长度,但是你不会知道棍子指向哪儿 向量就是不但知道棍子的长度,还知道棍子指向前面还是后面 张量就是不但知道棍子的长度,也知道棍子指向前面还是后面,还能知道这棍子又向上/下和左/右偏转了多少 向量的数乘? 一个数乘以...
在本文中,我们将讨论标量、向量、矩阵和张量之间的关系。 1. 标量 标量是一个单独的数值,它没有方向和大小的概念。例如,温度、时间、质量、速度等都是标量。标量可以用一个数值来表示,例如1, 2, 3等。在数学上,标量通常用小写字母表示,例如a、b、c等。 2. 向量 向量还可以分为行向量和列向量。行向量是...
张量:通常用花体字母表示(但在实际书写中常用粗体大写字母或加粗的方括号和逗号分隔的数值矩阵表示),如T、A等;或者用一个多维数组表示,如[[[1, 2], [3, 4]], [[5, 6], [7, 8]]]表示一个三维张量。 综上所述,标量、向量和张量在定义、维度、运算和表示方法等方面都存在明显的区别。它们在数学、物...
1、标量可以看作是0阶张量。2、向量可以看作是1阶张量。3、矩阵可以看作是2阶张量。4、3阶及3阶以上的张量,通常被称之为高阶张量。可以通过ndarray分别创建不同阶的张量:张量概念的底层,同样是基于多维数组进行存储实现。为了便于使用,在Tensorflow和PyTorch等深度学习框架中,张量都是作为最基本的数据结构进行...
标量、向量、矩阵、张量之间的关系 标量(Scalar)是只有大小,没有方向的量,如1,2,3等 向量(Vector)是有大小和方向的量,其实就是一串数字,如(1,2) 矩阵(Matrix)是好几个向量拍成一排合并而成的一堆数字,如[1,2;3,4] 张量(Tensor)是按照任意维排列的一堆数字的推广。如图所示,矩阵不过是三维张量下的一...
标量是一种没有方向的量,向量是由方向和大小组成的量,矩阵是由一系列数字组成的二维数组,而张量是矩阵的推广,可以表示多维数据结构。标量、向量、矩阵、张量之间存在一定的关联。向量的数乘是指用标量乘以向量,向量的内积(点积、数量积、标量积、dot product)是指两个向量的乘积,向量的外积(叉积...
标量,向量,矩阵与张量 1、标量 一个标量就是一个单独的数,一般用小写的的变量名称表示。 2、向量 一个向量就是一列数,这些数是有序排列的。用过次序中的索引,我们可以确定每个单独的数。通常会赋予向量粗体的小写名称。当我们需要明确表示向量中的元素时,我们会将元素排列成一个方括号包围的纵柱: ...
仅包含一个数字的张量叫作标量(scalar,也叫标量张量、零维张量、0D 张量)。 2.2.2 向量(1D 张量) 数字组成的数组叫作向量(vector)或一维张量(1D 张量)。一维张量只有一个轴 2.2.3 矩阵(2D 张量) 向量组成的数组叫作矩阵(matrix)或二维张量(2D 张量)。矩阵有 2 个轴(通常叫作行和 列)。你可以将矩阵直...
张量是线性代数中使用的一种数据结构,用于描述向量空间内代数对象集之间的多线性关系,封装了标量、向量和矩阵。一般情况下,是排列在规则网格上的数字数组,轴数可变,称为张量。我们通过写 A_( i, j, k ) 来识别张量A在坐标 ( i, j, k )处的元素。但要真正理解张量,我们需要扩展将向量视为具有大小和方向的...