机器学习(Machine Learning),就是让机器(计算机)也能像人类一样,通过观察大量的数据和训练,发现事物规律,获得某种分析问题、解决问题的能力。即让机器去学习、执行。 基本信息 中文名 机器学习 外文名 Machine Learning 性质 多领域交叉学科 涉及学科 概率论、统计学、逼近论、线性代数、高等数学 ...
1)机器学习算法依托的问题场景 机器学习在近30多年已发展为一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动「学习」的算法。 机器学习算法从数据中自动分析获得规律,并利用规律对未知数据进行预测。 机器学习理论关注可以实现的、...
机器学习是一种人工智能的分支,它是指让计算机通过学习数据和模式,从而自动改进和优化算法的能力。简单来说,机器学习是一种让计算机从数据中学习的方法,而不是通过手动编程来实现特定的任务。 机器学习的核心思想是让计算机通过数据来学习,从而自动发现数据中的规律和模式,并用这些规律和模式来做出预测或决策。 机器学...
1. 机器学习 机器学习(ML,Machine Learning)是人工智能领域和计算机科学领域的一个重要分支。机器学习是一门多领域交叉学科,涉及统计学、数据分析、概率论、计算机科学等多门学科,它的目标是通过研究利用数据和算法来模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断地改善自身的性能。简...
简而言之,机器学习就是对计算机一部分数据进行学习,进而对另外一些数据进行预测与判断。这种技术使得计算机能够利用已有的数据,通过特定的算法模型进行训练,从而掌握数据背后的潜在规律,实现对新数据的准确预测或分类。这一过程与人的学习过程颇为相似,都是通过积累经验来应对新问题。让我们以支付宝春节的“集五福”...
一、什么是机器学习 1. 机器学习概念 机器学习就是对计算机一部分数据进行学习,然后对另外一些数据进行预测与判断。 机器学习的核心是“使用算法解析数据,从中学习,然后对新数据做出决定或预测”。也就是说计算机利用以获取的数据得出某一模型,然后利用此模型进行预测的一种方法,这个过程跟人的学习过程有些类似,比如人...
关联规则学习通过寻找最能够解释数据变量之间关系的规则,来找出大量多元数据集中有用的关联规则。常见算法包括 Apriori算法和Eclat算法等。 14. 人工神经网络 人工神经网络算法模拟生物神经网络,是一类模式匹配算法。通常用于解决分类和回归问题。人工神经网络是机器学习的一个庞大的分支,有几百种不同的算法。(其中深度学...
图解机器学习算法系列 以图解的生动方式,阐述机器学习核心知识 & 重要模型,并通过代码讲通应用细节。 01 机器学习概述 1)什么是机器学习 人工智能(Artificial intelligence)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。它是一个笼统而宽泛的概念,人工智能的最终目标是使...
机器学习(Machine Learning)是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演译。