关键技术攻克:《指导意见》提出以大模型等人工智能技术突破为引领,在机器人已有成熟技术 基础上,重点在人形机器人“大脑”和“小脑”、“肢体”关键技术、技术创新体系等领域取得 突破。 一是开发基于人工智能大模型的人形机器人“大脑”,增强环境感知、行为控制、人机交互 能力,开发控制人形机器人运动的“小脑”,...
计算机视觉的发展经历了基于以特征描述子代表的传统视觉 方法、以 CNN 卷积神经网络为代表的深度学习技术,目前通用的视觉大模型正处 于研究探索阶段,人形机器人的场景相对工业机器人更通用、更复杂,视觉大模型 的 All in One 的多任务训练方案能使得机器人更好地适应人类生活场景。一方面, 大模型的强拟合能力使得...
计算机视觉的发展经历了基于以特征描述子代表的传统视觉 方法、以 CNN 卷积神经网络为代表的深度学习技术,目前通用的视觉大模型正处 于研究探索阶段,人形机器人的场景相对工业机器人更通用、更复杂,视觉大模型 的 All in One 的多任务训练方案能使得机器人更...
计算机视觉的发展经历了基于以特征描述子代表的传统视觉 方法、以 CNN 卷积神经网络为代表的深度学习技术,目前通用的视觉大模型正处 于研究探索阶段,人形机器人的场景相对工业机器人更通用、更复杂,视觉大模型 的 All in One 的多任务训练方案能使得机器人更好地适应人类生活场景。一方面, 大模型的强拟合能力使得人形...
我们认为 GPT(预训练大预言模型)和人形机器人的出现,是机器人在迈 向通用人工智能的道路上的一大步。感知世界的能力(机器人的眼睛):机器人自主移动的感知和定位技术中激光和视觉 导航是主流应用方案。计算机视觉的发展经历了基于以特征描述子代表的传统视觉 方法、以 CNN 卷积神经网络为代表的深度学习技术,目前通用...
大模型+机器人:未来智能革命将至 2.1 大模型赋能人形机器人,具身智能是未来目标 人形机器人是软硬件能力高集成的实体,商业化的核心突破点在于“AI 大脑”。可以说,当前的 AI 大脑在逻辑思维和行为智慧决策层面还需要一段成长空间,其驱动力很大程度上来自于算法的 升级与高水平的智能化。具身智能是人形机器人想要实现...
2. AI 大模型+人形机器人:给机器人提供常识 2.1. AI 大模型训练过程及发展趋势 大模型 = 预训练+微调。从 2017 年 Transformer 开始,到 GPT-1、BERT、GPT2、GPT-3、GPT-4 模型的出现,模型的参数量级实现了从亿到百万亿量级的突破, 大模型(预训练模型、Foundation Models)在无标注的数据上进行预训练,利用...
使机器人更加通用,需要机器人的感知能力、思考和决策能力、行动执行能力的全 面提升。我们认为 GPT(预训练大预言模型)和人形机器人的出现,是机器人在迈 向通用人工智能的道路上的一大步。 感知世界的能力(机器人的眼睛):机器人自主移动的感知和定位技术中激光和视觉 导航是主流应用方案。计算机视觉的发展经历了基于...
大模型+机器人:未来智能革命将至 2.1 大模型赋能人形机器人,具身智能是未来目标 人形机器人是软硬件能力高集成的实体,商业化的核心突破点在于“AI 大脑”。可以说,当前的 AI 大脑在逻辑思维和行为智慧决策层面还需要一段成长空间,其驱动力很大程度上来自于算法的 升级与高水平的智能化。具身智能是人形机器人想要实现...