百度试题 题目数学期望E(X2)及方差DX.相关知识点: 试题来源: 解析 由题意得EX=DX=E(X2)一(EX)2=写作 null
随机变量X的数学期望EX=2,方差DX=4,求EX2的值. 试题答案 在线课程 分析:本题首先要找出EX与DX之间的关系,进一步探讨EX,DX,EX2三者之间的关系,寻找解题的突破口. 解:EX2=x12p1+x22p2+x32p3+… DX=(x1-EX)2p1+(x2-EX)2p2+(x3-EX)2p3+… ...
所以:E(X2)=D(X)+[E(X)]2进而转换为求X的方差以及期望.根据题意,易知,X服从二项分布,其中:n=10,p= 4 10=0.4根据二项分布期望与方差的公式,有:E(X)=np=10×0.4=4;D(X)=np(1-p)=10×0.4×0.6=2.4故:E(X2)=D(X)+[E(X)]2=16+2.4=18.4.故本题答案为:18.4. 由题意,X服从二项...
在概率论与数理统计中,计算数学期望E(X^2)的方法取决于随机变量的类型。对于离散型随机变量X,其平方的期望值由公式E(X^2) = ∑((xi)^2) * pi给出,这里的(xi)是可能的取值,pi是对应的概率。而对于连续型随机变量,E(X^2)则通过定积分计算,即E(X^2) = ∫(x^2) * f(x) dx,...
E(X^2)=D(X)+E(X)^2 D(X)=E(X^2)-E(X)^2 D(x)是方差,E(X)是期望,等式变形得E(X^2)=D(X)+E(X)^2分析总结。 二项分布的数学期望ex2怎么求结果一 题目 二项分布的数学期望E(X^2)怎么求? 答案 楼上哥们说错了.D(X)=E(X^2)-E(X)^2D(x)是方差,大学里是Var(X)=np(1-p)...
二项分布的数学期望E(X^2)可以通过其基本性质得出。在二项分布中,如果随机变量X服从b(n,p),其中n代表试验次数,p是每次试验成功的概率,那么E(X)等于np,而方差D(X)为npq,其中q=1-p。进一步计算得E(X^2)等于npq+(np)^2,简化后为np(np+q)。因此,二项分布的期望E(X^2)反映了成功...
E(X^2)是X^2的期望。比如,P{X=1}=2/3,P{X=0}=1/6,P{X=-1}=1/6。EX=1*2/3+0*1/6+(-1)*1/6=2/3-1/6=1/2。EX^2=1^2*2/3+0^2*1/6+(-1)^2*1/6=2/3+1/6=5/6。DX=EX^2-【EX】^2=5/6-(1/2)^2=7/12。但是根据期望的定义:EX=累计所有的P(Xi)*Xi。所以...
与(x+y+z.)²的差别.解题步骤 平均值加减标准差是用来描述一组数据的离散程度的统计量。平均值是指一组数据的总和除以数据的个数,它可以反映数据的集中趋势;标准差是指一组数据与其平均值的偏差的平方和的平均值的平方根,它可以反映数据的离散程度。平均值加减标准差的意义在于,如果一组数据的值在平均值加减...
1、数值不同E(X)=E(X),而E(X^2)=D(X)+E(X)*E(X)。 2、代表的意义不同,E(X)表示X的期望,而E(X^2)表示的是X^2的期望。 3、求解的方法不同,E(X^2)的求解为x^2乘以密度函数求积分,E(X)的求解为x乘以概率密度然后求积分。 扩展资料: 期望的性质: 设C为一个常数,X和Y是两个随机变量...
要求EX^2,只知道EX还不够,至少要知道x是如何分布的,也即它的分布函数或者概率密度函数。若X~N(1,3),则Dx=3,由DX=EX^2-(EX)^2及EX的值可以算出EX^2。若X~N(1,3),Y=3X+1,EY=E(3X+1)=3EX+1=3*1+1=4,DY=D(3X+1)=3^2*DX=9*DX=9*3=27,所以Y~N(4,...