百度试题 结果1 题目设随机变量X的数学期望为E(X)=1,对常数a,b,有E(aX+b)= .相关知识点: 试题来源: 解析 Eax+b=aEx+b=a+b 反馈 收藏
期望: E(X)=∑i=1nxipi 方差: D(X)=∑i=1n[xi−E(X)]2pi 连续型随机变量: 期望: E(X)=∫−∞∞xf(x)dx 方差: D(X)=∫−∞∞[x−E(X)]2f(x)dx 一、期望和方差的运算性质 期望运算性质: (1)E(c)=c,其中c是常数;(2) E(cX)=cE(X);(3) E(X+Y)=E(X)+E(Y);...
当E|X|<∞(此时我们称X是绝对可积的)时,我们分别有以下计算公式:
或者先求出Cov(x,y)再用公式 Cov(X,Y)=E(XY)--E(X)*E(Y)。D(X±Y)=D(X)+D(Y)±...
1、数值不同E(X)=E(X),而E(X^2)=D(X)+E(X)*E(X)。 2、代表的意义不同,E(X)表示X的期望,而E(X^2)表示的是X^2的期望。 3、求解的方法不同,E(X^2)的求解为x^2乘以密度函数求积分,E(X)的求解为x乘以概率密度然后求积分。 扩展资料: 期望的性质: 设C为一个常数,X和Y是两个随机变量...
具体而言,E(X)的计算公式为E(X) = 0*0.3 + 1*0.2 + 2*0.5 = 1.2。进一步地,我们也可以计算出E(X-1)的值。根据期望的线性性质,E(X-1) = E(X) - E(1) = 1.2 - 1 = 0.2。除了期望之外,方差也是衡量随机变量离散程度的重要指标。方差D(X)定义为E[(X-E(X))^2]...
解析 因为Xi只是X的某一个代表.X是一般的变量,X1,X2,这些都是从X的分布里生成出来的,所以他们有同样的分布,也就是IID.同分布的随机变量,当然他们的期望也是一样的了.结果一 题目 为什么正态分布中数学期望E(Xi)=E(X),这是怎么回事, 答案 因为Xi只是X的某一个代表.X是一般的变量,X1,X2,这些都是从X...
E(x+1)=2。把1理解为一个E(X2)=1的期望。然后由于他们独立,所以E(X+1)=E(X)+E(X2)=1+1=2。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。历史故事 在17...
局部抽样时,我们计算期望E(x) =Σx/n,意思是默认所有样本变量x的出现概率都一样,都是1/n,公式的意义正好可以套average这个操作,化整为零,通过average(平摊)操作得到mean(中心值,均值)。 从数值的理解看,中心值是可以理解为某种形式的均值,在一条数轴上值的中间,一群人的收入水平的中间。
E(X^2)是X^2的期望。比如,P{X=1}=2/3,P{X=0}=1/6,P{X=-1}=1/6。EX=1*2/3+0*1/6+(-1)*1/6=2/3-1/6=1/2。EX^2=1^2*2/3+0^2*1/6+(-1)^2*1/6=2/3+1/6=5/6。DX=EX^2-【EX】^2=5/6-(1/2)^2=7/12。但是根据期望的定义:EX=累计所有的P(Xi)*Xi。所以...