有限容积法和有限差分法:一个区别就是有限容积法的截差是不定的(跟取的相邻点有关,积分方法离散方程),而有限差分就可以直接知道截差(微分方法离散方程).有限容积法和有限差分法最本质的区别是,前者是根据积分方程推导出来的(即对每个控制体积分),后者直接根据微分方程推导出来,所以前者的精度不但取决于积分时的精...
该方法以区域的体积分为基础,在各个控制体内求解守恒方程。该方法适用于复杂的多组分、多相流动的领域以及非稳态或非线性问题。 无论是有限差分、有限元还是有限体积法,其核心思想都是通过把连续的微分方程式离散求解,从而转化为一系列有限的点上的代数方程式,解决了连续问题转化为离散问题的过程,从而通过离散求解代数...
有限差分有限元有限体积法有限元方法的基础是变分原理和加权余量法其基本求解思想是把计算域划分为有限个互不重叠的单元在每个单元内选择一些合适的节点作为求解函数的插值点将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式借助于变分原理或加权余量法将微分方程离散求解 有限差分...
有限体积法次之,有限差分法则相对欠缺。但有限差分法在构造离散格式上更为灵活,易于构造新的格式。从计算工作量看,同一物理问题有限元法的工作量要大于有限差分法和有限体积法。从理论发展的成熟程度看,有限差分法已有一整套定性分析理论,其次是有限体积法,而有限元法相对要滞后一些,如计算中的数值误差分析和改进...
电磁学领域有些软件会用FDTD(时域有限差分)方法,个人见过的为数不多的在工业软件领域采用差分的例子。 3. 有限体积法 (Finite Volume Method) 有限体积法就比较强大了,除了高精度构造略微麻烦,几乎通吃有限差分所有领域,双曲性、抛物型、椭圆形都可以。当然,对于椭圆形方程不如有限元方法更搭配。看看这些如雷贯耳...
大家都知道,常用的离散化方法有:有限差分法,有限元法,有限体积法。 1.有限差分法是数值解法中最经典的方法。它是将求解区域划分为差分网格,用有限个网格节点代替连续的求解域,然后将偏微分方程(控制方程)的导数用差商代替,推导出含有离散点上有限个未知数的差分方程组。这种方法发展比较早,比较成熟,较多用于求解...
1、有限差分,有限元,有限体积等离散方法的区别介绍1 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未...
有限元法,有限差分法和有限体积法的区别 1. FDM 1.1 概念 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上...
学过弹性力学的人应该都知道什么是有限元,而对学计算流体力学的来说,有限差分和有限体积法也是两种非常重要的方法。三者虽然目前形式各异,但是思想上有很多类似的地方。CFD(Computational Fluid Dynamics)中主要的三种离散方法就是他们三个。 而这篇文章主要目的是对三者进行比较,并给出三种方法计算同一个流体一维算例...
有限元法,有限差分法和有限体积法的区别 1. FDM 1.1 概念 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上...