有限差分 有限元 有限体积 有限差分、有限元和有限体积是数值计算方法中常用的三种离散化方法。它们的核心思想是将微分方程式转化为一系列有限的点上的代数方程式,将连续问题转化为离散问题。 一、有限差分法 有限差分法是将微分方程的导数用差商来逼近的方法,用差商来代替微分运算。用区间的两个端点上的函数值之差...
有限容积法和有限差分法:一个区别就是有限容积法的截差是不定的(跟取的相邻点有关,积分方法离散方程),而有限差分就可以直接知道截差(微分方法离散方程).有限容积法和有限差分法最本质的区别是,前者是根据积分方程推导出来的(即对每个控制体积分),后者直接根据微分方程推导出来,所以前者的精度不但取决于积分时的精...
有限差分有限元有限体积法有限元方法的基础是变分原理和加权余量法其基本求解思想是把计算域划分为有限个互不重叠的单元在每个单元内选择一些合适的节点作为求解函数的插值点将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式借助于变分原理或加权余量法将微分方程离散求解 有限差分...
上述有限元方法由于采用了全局连续的测试函数,因此也叫做连续有限元方法,与间断有限元方法对应。后者允许在网格单元的界面处出现间断。 总结 无论是有限差分方法(FDM),还是有限体积方法(FVM),亦或是连续/间断有限元方法(FEM),乃至谱方法,都可以通过余...
1. 有限元 (Finite Element Method) 2. 有限差分 (Finite Difference Method) 3. 有限体积法 (Finite Volume Method) 偏微分方程的类型 偏微分方程(组)可以把它的算子提出来,构成算子代数方程(组),然后根据算子代数方程(组)的特征值来区分是椭圆的、双曲的、还是抛物型的。具体可以翻看各类数学物理方程或者偏微...
近年来,有限体积法(FVM)由于其简单的数据结构而得到越来越广泛的应用,其公式与FDM和FEM都有密切的关系,Flow field-dependent variation(FDV)方法也指出了其关系。 历史上,由于公式和计算的简洁,有限差分法一直主导着CFD。有限元分析的公式更复杂,计算更费时。然而,在最近开发的许多FEM应用中,情况发生了变化。许多...
大家都知道,常用的离散化方法有:有限差分法,有限元法,有限体积法。 1.有限差分法是数值解法中最经典的方法。它是将求解区域划分为差分网格,用有限个网格节点代替连续的求解域,然后将偏微分方程(控制方程)的导数用差商代替,推导出含有离散点上有限个未知数的差分方程组。这种方法发展比较早,比较成熟,较多用于求解...
学过弹性力学的人应该都知道什么是有限元,而对学计算流体力学的来说,有限差分和有限体积法也是两种非常重要的方法。三者虽然目前形式各异,但是思想上有很多类似的地方。CFD(Computational Fluid Dynamics)中主要的三种离散方法就是他们三个。 而这篇文章主要目的是对三者进行比较,并给出三种方法计算同一个流体一维算例...
大家都知道,常用的离散化方法有:有限差分法,有限元法,有限体积法。 1.有限差分法是数值解法中最经典的方法。它是将求解区域划分为差分网格,用有限个网格节点代替连续的求解域,然后将偏微分方程(控制方程)的导数用差商代替,推导出含有离散点上有限个未知数的差分方程组。这种方法发展比较早,比较成熟,较多用于求解...
有限容积法和有限差分法:一个区别就是有限容积法的截差是不定的(跟取的相邻点有关,积分方法离散方程),而有限差分就可以直接知道截差(微分方法离散方程)。有限容积法和有限差分法最本质的区别是,前者是根据积分方程推导出来的(即对每个控制体积分),后者直接根据微分方程推导出来,所以前者的精度不但取决于积分时的...