个解,使其在每个方程中的误差之和达到最小但每个误差有正有负,因此我们就以“偏差的平方和最小”为原则具体的计算方法为 设矩阵A为矛盾方程组的系数矩阵 b为其等号右边的数值矩阵则方程组用矩阵可表示为AX=b两边同时左乘A的转置矩阵即A(AT)X=(AT)b (T为上标,即A的转置)再解这个方程组得到的解即为最优...
个解,使其在每个方程中的误差之和达到最小但每个误差有正有负,因此我们就以“偏差的平方和最小”为原则具体的计算方法为 设矩阵A为矛盾方程组的系数矩阵 b为其等号右边的数值矩阵则方程组用矩阵可表示为AX=b两边同时左乘A的转置矩阵即A(AT)X=(AT)b (T为上标,即A的转置)再解这个方程组得到的解即为最优...
使其在每个方程中的误差之和达到最小但每个误差有正有负,因此我们就以“偏差的平方和最小”为原则具体的计算方法为 设矩阵A为矛盾方程组的系数矩阵 b为其等号右边的数值矩阵则方程组用矩阵可表示为AX=b两边同时左乘A的转置矩阵即A(AT)X=(AT)b (T为上标,即A的转置)...