B树的优化特性使得它更适合应对大规模文件系统的索引需求。通过减少分裂和合并操作的频率,B树能够更有效地维护索引结构。 3.3.2 减少磁盘IO次数 类似于B+树,B树在文件系统中同样能够减少磁盘IO次数。文件系统通常需要频繁地进行查找和检索文件,而B树的平衡性和高度平衡特性使得这一过程更为高效。 3.3.3 降低维护成本 ...
(和B+树)作为索引结构,可以加快查询速速,此时B树中的key就表示键,而data表示了这个键对应的条目在硬盘上的 逻辑地址 。 1.2 B树的插入操作 插入操作是指插入一条记录,即(key, value)的键值对。如果B树中已存在需要插入的键值对,则用需要插入的value替换旧的value。若B树不存在这个key,则一定是在叶子结点中进行...
非叶子结点只存储作为索引的key,所以B+树的叶子结点空间占用更大一些,而非叶子结点空间占用更少一些,同时B+树的叶子结点用指针链接成了一个带头单链表,对于数据库中存储表信息所使用的数据结构,大部分其实用的都是B+树,而不是B树,主要由于B树有以下几个优点:(1)B树的非叶子结点空间占用更少,在文件读取时...
但二叉查找树就是二叉查找树,B树就是B树,B树是一棵含有m(m>=2)个关键字的平衡多路查找树),此时,每个内结点可能因此而含有2个、3个或4个子女,亦即一棵2-3-4树,然而在实际中,通常采用大得多的t值。
二、B树的插入和删除 2.1 插入流程 (1) 在插入 key 后,结导致原结点关键字数超过上限,则从中间位置 ([m/2]) 将其中的关键字分为两部分,左部分包含的关键字放在原结点中,右部分包含的关键字放到新结点中,中间位置 ([m/2]) 的结点插入原结点的父结点。
1. B树(B-tree) (1) 定义 B树(B-tree):一种平衡的 多路搜索树,多用于文件系统、数据库的实现。其特点:1个节点可以存储超过2个元素,可以拥有超过2个子...
本文将主要讲述另一种树形结构,B树;B 树是一种多路平衡查找树,但是可以将其理解为是由二叉查找树合并而来;它主要用于在不同存储介质之间查找数据的时候,减少 I/O 次数(因为一次读一个节点,可以读取多个数据); 一、结构概述 B树,多路平衡查找树,即有多个分支的查找树;如图所示: B 树主要应用于多级存储介质之间...
1、B-树(B树)的基本概念 B-树中所有结点中孩子结点个数的最大值成为B-树的阶,通常用m表示,从查找效率考虑,一般要求m>=3。一棵m阶B-树或者是一棵空树,或者是满足以下条件的m叉树。 1)每个结点最多有m个分支(子树);而最少分支数要看是否为根结点,如果是根结点且不是叶子结点,则至少要有两个分支,非...
一棵m阶的B树(不是指m叉树,m是这棵树的度,下同),或者是空树,或者是满足下列特性的m叉树: 1)树中每个节点至多m个子树,m-1个关键字。 2)根节点若不是叶子节点,至少要有2棵子树,最多m棵子树。 3)除根节点和叶子节点以外,其余节点至少要有m/2棵子树,最多m棵子树。