在第一部分中,将介绍Lidar SLAM,包括Lidar传感器,开源Lidar SLAM系统,Lidar中的深度学习以及挑战和未来。 第二部分重点介绍了Visual SLAM,包括相机传感器,不同稠密SLAM的开源视觉SLAM系统。 第三部分介绍视觉惯性里程法SLAM,视觉SLAM中的深度学习以及未来。 第四部分中,将介绍激光雷达与视觉的融合。 视觉SLAM的稳定性是...
本文提出了一个紧耦合的雷达视觉惯导SLAM系统,可以实时高精度鲁棒的进行状态估计和建图。LVI-SAM构建在因子图之上,并且由两个子系统组成:一个视觉惯导系统和一个激光惯导系统。这两个子系统利用紧耦合的方法,视觉惯导的系统利用激光惯导的估计来做初始化。视觉惯导系统利用激光雷达的测量给视觉特征提供深度来提升精度。...
LVI-SAM是MIT团队的TixiaoShan等人开源的一个紧耦合的激光雷达视觉惯导SLAM系统,可以实时高精度鲁棒的进行状态估计和建图。 LVI-SAM构建在因子图之上,并且由两个子系统组成:一个视觉惯导系统和一个激光惯导系统。这两个子系统利用紧耦合的方法,视觉惯导的系统利用激光惯导的估计来做初始化。视觉惯导系统利用激光雷达的...
紧耦合融合方法 视觉惯导系统中,优化机体坐标系状态量,同时增加了IMU预积分测量值约束。 采用滑动窗口形式的图优化技术,优化的状态量包括,IMU机体在惯性坐标系(世界坐标系)的位置,速度,姿态以及IMU机体坐标系中的加速度和角速度的偏置量估计。 对于状态量可以采用最小化视觉测量和IMU测量的联合误差进行优化。 通过IMU...
Visual-Inertial Monocular SLAM with Map Reuse 重用地图的单目视觉惯导SLAM系统 摘要 近些年来有很多优秀的视觉惯导融合的里程计系统,计算高精度和鲁棒性的传感器的增量运动。但是这些系统都是没有闭环的,所以导致系统即使回到观测过的地方还是会有累计误差。本文作者提出了一个新颖的基于紧耦合的带有闭环检测的视觉惯导...
本文提出了一种快速的激光视觉惯导融合的slam系统,可以分为LIO和VIO两个紧耦合的子系统。LIO直接把当前的扫描点和增量构建的地图对齐,地图点也会辅助基于直接法的VIO系统进行图像对齐。为了进一步提高vio系统的鲁棒性和准确性,作者提出了一种新的方法来剔除边缘或者在视觉中遮挡的地图点。本文方法可以适用于机械雷达和...
Visual-Inertial Monocular SLAM with Map Reuse 重用地图的单目视觉惯导SLAM系统 摘要 近些年来有很多优秀的视觉惯导融合的里程计系统,计算高精度和鲁棒性的传感器的增量运动。但是这些系统都是没有闭环的,所以导致系统即使回到观测过的地方还是会有累计误差。本文作者提出了一个新颖的基于紧耦合的带有闭环检测的视觉惯导...
Visual-Inertial Monocular SLAM with Map Reuse 重用地图的单目视觉惯导SLAM系统 摘要 近些年来有很多优秀的视觉惯导融合的里程计系统,计算高精度和鲁棒性的传感器的增量运动。但是这些系统都是没有闭环的,所以导致系统即使回到观测过的地方还是会有累计误差。本文作者提出了一个新颖的基于紧耦合的带有闭环检测的视觉惯导...
本文提出了一个紧耦合的雷达视觉惯导SLAM系统,可以实时高精度鲁棒的进行状态估计和建图。LVI-SAM构建在因子图之上,并且由两个子系统组成:一个视觉惯导系统和一个激光惯导系统。这两个子系统利用紧耦合的方法,视觉惯导的系统利用激光惯导的估计来做初始化。视觉惯导系统利用激光雷达的测量给视觉特征提供深度来提升精度。
摘要:视觉和惯性传感器的融合,因其感知方式的互补性在机器人技术中已经变得流行起来。虽然目前大多数融合策略依赖于滤波方案,但视觉机器人社区最近已经转向基于非线性优化方法的同步定位与建图(SLAM),并发现这种方法在性能方面具有显着优势和计算复杂性。遵循这一趋势,我们提出一种新的方法,将视觉测量与来自惯性测量单元...