最后我们介绍 Lie 群在微分流形上的作用 . 定义4:设 G 为Lie 群 , M 为微分流形 . 如果光滑映射 \begin{align*} F:G\times M\rightarrow M~,~(g,x) \mapsto gx~,~\forall~g\in G, x\in M \end{align*}\\ 满足以下条件 (i) ex=x~,~\forall~x\in M ; (ii) g_1(g_2x)=(g_1g...
《微分流形初步(第二版)》是2001年高等教育出版社出版的图书,作者是陈维恒。内容介绍 《研究生教学用书:微分流形初步》是微分流形理论的入门教材,是联系经典数学和当代数学文献的桥梁,主要内容是介绍微分流形的基本概念和例子、微分流形上的光滑切向量场、光滑张量场、外微分式的运算和性质,以及黎曼流形、李群、...
《微分流形初步》是2002年高等教育出版社出版的图书,作者是陈维桓。 基本信息 书名 微分流形初步 作者 陈维桓 出版社 高等教育出版社 出版时间 2002年1月 开本 16 开 ISBN 9787040099218 字数 420000 目录 1简介 2目录 折叠编辑本段简介 微分流形是20世纪数学的有代表性的基本观念,是描述许多自然现象的一种空间形式...
摘要:微分流形是描述无数自然现象的一种空间形式,是 20 世纪数学的有代表性的基本概 念.本文分成四大部分,共 11 小节,初步介绍关于微分流形的基本知识,对微分流形做一些 初步的认识.其中包括关于微分流形、切向量场和张量场、外微分式、Stokes 定理等的介 绍. 关键词:微分流形;Stokes 定理;张量场;切向量场;外...
《研究生教学用书:微分流形初步》是微分流形理论的入门教材,是联系经典数学和当代数学文献的桥梁,主要内容是介绍微分流形的基本概念和例子、微分流形上的光滑切向量场、光滑张量场、外微分式的运算和性质,以及黎曼流形、李群、微分纤维丛的初步知识。全书的叙述深入浅出,平易流畅,重点突出,强调几何背景,着重介绍在微分流...
如何表示微分几何的流形? healTH Truth|Heal Awake Rise Guard 多关注自己身上做的好的地方。感激欣赏自己做的好的地方。因为感激=增值。 推荐一个小习惯 这个小习惯能让你更加快乐,要坚持做下去。 希望能对你有帮助!•ᴗ•… 阅读全文 赞同添加评论 ...
定义1:设为群 , 群运算记为. 如果同时是微分流形且为映射 , 则称为Lie 群. 当为拓扑空间且群的乘法和逆运算为连续映射时 , 称为拓扑群 . 如果没有特别说明 , 下面我们提到的 Lie 群都是指光滑 Lie 群 . 命题1:(i) 设为 Lie 群 ,, 则左移映射 ...
紧致的微分流形Mm均可嵌入到某个欧氏空间Rn中去.我们后面会解释什么是嵌入,而这个定理的最强版本是n维流形M可以嵌入到R2n中,这个结论已经是达到最优.在这种观点下,Arnold认为流形实质上就是就可以等同于欧氏空间.对单位分解这部分内容感兴趣的朋友也可以去翻看梅加强老师的《流形与几何初步》,上面有着单位分解定理的...
微分流形CHAPERCHAPER33微分流形dxmPfasuppddt 系统标签: 分流向量映射拓扑定理空间拓扑 otherk微分流形初步§3切向量场§3.1光滑切向量场§3.1.1切向量场定义定义3.1.1.流形上每一点指定一个切向量,即映射v:M−→TM,v(x)∈TxM称为流形M上的切向量场.若在点p∈M,存在局部坐标系(U,xi),切向量场v有分量...