百度试题 结果1 题目已知函数f(x) = 2x - 1,其图像是( )。 A. 一次函数图像 B. 二次函数图像 C. 指数函数图像 D. 对数函数图像 相关知识点: 试题来源: 解析 A 反馈 收藏
解答: 解:函数f(x)= x2 x-1,则f′(x)= 2x(x-1)-x2 (x-1)2= x(x-2) (x-1)2,由f′(x)>0得x>2,或x<0,f(x)单调递增;当0<x<1或1<x<2,f′(x)<0,f(x)单调递减,故x=0时,f(x)取极大值0;x=2时,f(x)取极小值4....
【解】(待定系数法)∵f(x)为一次函数,∴设 f(x)=kx+b(k≠0) ,∴f(f(x))=f(kx+b)=k(kx+b)+b=k^2x+kb+b=2x-1 ∴k^2=2;kb+b=-1. 解得或k=√2,;b=1-√2. k=-√2,;b=√2+1.,∴f(x)=√2x+1-√2 - f(x)=-√2x+1+√2 结果...
百度试题 结果1 题目已知函数f(x)=2x-1 。 相关知识点: 试题来源: 解析 4
本题答案如下所示:
对a分类讨论,分别求出函数f(x)和的值域,比较两个函数的值域即得解. 当a=0时,函数f(x)=2x-1的值域为[1,+∞),函数的值域为[0,+ +∞)满足题意. 当a<0时,y= 的值域为(2a,+∞),y= 的值域为[a+2,-a+2], 因为a+2-2a=2-a>0,所以a+2>2a,所以此时函数g(x)的值域为(2a,+∞),由题得...
(1)函数f(x)=2x-1为递增函数,则B={1,3,5,7,9,11,13};(2)全集为U={x|0<x≤15,x∈Z}={1,2,3,…,15},?UA={8,9,10,11,12,13,14,15},则(?UA)∩B={9,11,13},A∪B={1,2,3,4,5,6,7,9,11,13},则?U(A∪B)={8,10,...
x)]=2f(x)-1=2(2x-1)-1=4x-3,由此可以求出f[f(x)]≥1的解集.解答:解:f[f(x)]=2f(x)-1=2(2x-1)-1=4x-3≥1,∴4x≥4,x≥1,故f[f(x)]≥1的解集为{x|x≥1}.故答案为:{x|x≥1}.点评:本题考查函数的性质和应用,解题时要认真审题,仔细解答.
∵f(x)=2x一1,∴f(a)=2a一1,又f(a)=1/2,∴2a一1=1/2,2a=1/2+1 2a=3/2 a=3/4。
已知函数f(x)=2x-1,则f(x=1)的值为 扫码下载作业帮搜索答疑一搜即得 答案解析 查看更多优质解析 解答一 举报 f(x=1)=2*1=1=1 解析看不懂?免费查看同类题视频解析查看解答 相似问题 已知函数f(x)=2x-a/x,且f(1)=3 (1)求a的值 (2)判断函数的奇偶 已知函数f(x)=√2x-x 如果f(a)=√2+...