首先介绍一下TSP问题。TSP(traveling salesman problem,旅行商问题)是典型的NP完全问题,即其最坏情况下的时间复杂度随着问题规模的增大按指数方式增长,到目前为止还没有找到一个多项式时间的有效算法。TSP问题可以描述为:已知n个城市之间的相互距离,某一旅行商从某一个城市出发,访问每个城市一次且仅一次,最后回到出发的...
在基本遗传算法(或者简单遗传算法)中,有三个基本的遗传操作(operator),即选择操作(Selection)、交叉操作(Crossover)以及变异操作(Mutation)。关于这些操作详细的过程请参见简单遗传算法MATLAB实现。 3. TSP问题遗传算法实现 关于TSP问题的定义,在上一篇(蚁群算法Java实现以及TSP问题蚁群算法求解)中已有详细的说明和定义,...
通过应用遗传算法求解TSP问题,给出了遗传算法中各算子的实现方法,并用遗传算法(Genetic Algorithm,简称GA)和穷举法分别求解了15个城市的TSP问题,结果表明,遗传算法具有明显的优越性。引入模拟退火的思想对遗传算法的变异算子进行改进,并求解了50个城市的TSP,得到了满意的结果。 关键词:遗传算法;TSP;模拟退火 0 引言 ...
下面是一个使用Python实现的基于遗传算法的TSP问题求解示例代码: importrandomimportnumpyasnp# 定义城市坐标city_coordinates={'A':(0,0),'B':(1,2),'C':(3,4),'D':(5,6),'E':(7,8)}# 计算两个城市之间的距离defdistance(city1,city2):x1,y1=city_coordinates[city1]x2,y2=city_coordinates[...
遗传算法求解TSP问题实验Python实现 遗传算法解决tsp问题,遗传算法顾名思义就是模拟生物界的自然选择原理,比如对于TSP问题,遗传算法大体上是可以先随机生成一组大量的解空间,作为一个初始的种群,然后按照一定的策略让种群自由交叉(也就是传说中的交配),变异。按照一
关键字:TSP;遗传算法;粒子群算法 0.引言 旅行商问题是一个经典的优化组合问题,它可以扩展到很多问题,如电路布线、输油管 路铺设等,但是,由于 TSP 问题的可行解数目与城市数目 N 是成指数型增长的,是一个 NP 难问题,因而一般只能近似求解,遗传算法(GA)是求解该问题的较有效的方法之一,当 然还有如粒子群算法,...
摘要:以遗传算法求解旅行商问题(TSP)为例,提出一种改进的交叉和变异算子,深入讨论了各个遗传算子的程序实 现,并给出其算子的M A TL AB程序编码,最后用5个城市的非对称TSP进行仿真分析.结果表明,改进的算法比传统 算法收敛速度更快,适应值更优,说明改进算法是有效的,证实T SP问题是遗传算法得以成功应用的典型...
在基本遗传算法(或者简单遗传算法)中,有三个基本的遗传操作(operator),即选择操作(Selection)、交叉操作(Crossover)以及变异操作(Mutation)。关于这些操作详细的过程请参见。3. TSP问题遗传算法实现 关于TSP问题的定义,在上⼀篇()中已有详细的说明和定义,在此不予重述。⽤遗传算法求解TSP问题,最困难...
求解TSP问题的贪心遗传算法 提出贪心遗传算法.通过构建"基因库"形成好的"基因片断",从而生成高性能的初始种群;依据贪心选择的原则指导遗传操作,实施贪心交叉操作和贪心变异操作;移民操作向种群引... 魏英姿,赵明扬,黄雪梅,... - 《计算机工程》 被引量: 62发表: 2004年 ...
摘㊀要:TSP问题属于组合优化问题,同时也是一个NPC问题,因此人们一直致力于为其寻找有效的近似求解算法㊂遗传算法是模仿生物进化而构建的一种随机搜索方法,具有较强的全局搜索能力㊁潜在的并行性以及良好的可扩展性,能有效求解TSP问题㊂然而,如何确定遗传参数和选择遗传操作一直是一个难题,本文针对...