这一次,我再以经典的TSP问题为例,更加深入地说明遗传算法中选择、交叉、变异等核心步骤的实现。而且这一次解决的是离散型问题,上一次解决的是连续型问题,刚好形成对照。 首先介绍一下TSP问题。TSP(traveling salesman problem,旅行商问题)是典型的NP完全问题,即其最坏情况下的时间复杂度随着问题规模的增大按指数方式增...
遗传算法解决TSP问题(C++版) 遗传算法流程: 交叉,编译,计算适应度,保存最优个体。 其中交叉过程是选择最优的两个染色体进行交叉操作,本文采用的是轮盘赌算法。 #include #include #include usingnamespacestd; #definepopulation200//种群数量 #definepc0.9//交叉的概率 #definepm0.1//变异的概率 #definecount200/...
基于格雷码方法:传统二进制编码的一种改进,容易实现交叉,变异操作,但是对于该问题不是最优的 基于符号编码:对于TSP问题,我们直接使用路径来表示一个染色体。即使用一个整数数组,数组长度为TSP城市的数量,数组中存储各个城市编号,从下标为0开始逐个遍历数组元素形成的一个序列即为路径(对于要回到原点的要求,为了方便表示...
这一次,我再以经典的TSP问题为例,更加深入地说明遗传算法中选择、交叉、变异等核心步骤的实现。而且这一次解决的是离散型问题,上一次解决的是连续型问题,刚好形成对照。 首先介绍一下TSP问题。TSP(traveling salesman problem,旅行商问题)是典型的NP完全问题,即其最坏情况下的时间复杂度随着问题规模的增大按指数方式增...
应用遗传算法解决 TSP 问题,首先对访问城市序列进行排列组合的方法编码,这保证了每个城市经过且只经过一次。接着生成初始种群,并计算适应度函数,即计算遍历所有城市的距离。然后用最优保存法确定选择算子,以保证优秀个体直接复制到下一代。采用有序交叉和倒置变异法确定交叉算子和变异算子。
%TSP问题(又名:旅行商问题,货郎担问题)遗传算法通用matlab程序 %D是距离矩阵,n为种群个数,建议取为城市个数的1~2倍, %C为停止代数,遗传到第 C代时程序停止,C的具体取值视问题的规模和耗费的时间而定 %m为适应值归一化淘汰加速指数 ,最好取为1,2,3,4 ,不宜太大 %alpha为淘汰保护指数,可取为0~1之间任...
数学建模:最详细的遗传算法解决tsp问题(C语言实现).pdf,数学建模:最详细的遗传算法解决tsp问题(C语⾔实现) 1.遗传算法是什么? 遗传算法的概念是由Holland于1973年受⽣物进化论的启发⽽⾸次提出的,它是⼀种通过模拟⽣物界⾃然选择和遗传机制的随机搜索
典的TSP问题为例,更加深⼊地说明遗传算法中选择、交叉、变异等核⼼步骤的实现。⽽且这⼀次解决的是离散型问题,上⼀次解决的是连续型问题,刚好形成对照。⾸先介绍⼀下TSP问题。TSP(traveling salesman problem,旅⾏商问题)是典型的NP完全问题,即其最坏情况下的时间复杂度随着问题规模的增⼤按指数...
C语言解决TSP问题的编程 /*通过C语言的运用遗传算法解决TSP问题*/ #include<stdlib.h> #include<stdio.h> #include<math.h> #include<stdafx.h> #include #definePopSize50/*种群类DNA个数*/ #defineMaxGens200/*最大代数*/ #defineN10/*问题规模*/ #definePC0.8/*交叉概率*/ #definePM0.01/*突变...
解TSP问题的遗传算法C语言程序 #includestdio.h #includestdlib.h #includemath.h #includealloc.h #includeconio.h #includefloat.h #includetime.h #includegraphics.h #includebios.h #define maxpop 100 #define maxstring 100 struct pp{unsigned char chrom[maxstring]; ? ?float x,fitness; ? ?