关系抽取任务通常遵循管道处理,称为管线方法,将关系抽取任务拆分为命名实体识别和关系分类两个子任务,先进行实体识别,然后在实体识别完成的基础上抽取实体之间关系。管线方法通常无法捕获实体和关系类型之间的联合特征,命名实体识别的误差会累计到接下来的关系分类模型之中。因此又有将命名实体识别和关系分类结合起来的联合...
Pipeline方法指先抽取实体、再抽取关系。Pipeline方法易于实现,两个抽取模型的灵活性高,实体模型和关系模型可以使用独立的数据集,并不需要同时标注实体和关系的数据集。但是存在以下缺点: 误差积累:实体抽取的错误会影响下一步关系抽取的性能。 实体冗余:由于先对抽取的实体进行两两配对,然后再进行关系分类,没有关系的候...
本文关注的任务是从无结构的文本中抽取实体以及实体之间的关系(实体 1-关系-实体 2,三元组),这里的关系是我们预定义好的关系类型,例如下图: 目前有两大类方法,一种是使用流水线的方法(Pipelined Method)进行抽取:输入一个句子,首先进行命名实体识别,然后对识别出来的实体进行两两组合,再进行关系分类,最后把存在实...
六、DUIE数据集 【自然语言处理】之--实体关系抽取数据集_关系抽取 duie2.0数据集 详解-CSDN博客 DuIE:知识抽取数据集_数据集-飞桨AI Studio星河社区 DuIE 2.0 Official_数据集-飞桨AI Studio星河社区 七、multinerd https://github.com/Babelscape/multinerd 10种语言:中文、荷兰语、英语、法语、德语、意大利语、...
探索图像数据中的隐藏信息:语义实体识别和关系抽取的奇妙之旅 1. 简介 1.1 背景 关键信息抽取 (Key Information Extraction, KIE)指的是是从文本或者图像中,抽取出关键的信息。针对文档图像的关键信息抽取任务作为OCR的下游任务,存在非常多的实际应用场景,如表单识别、车票信息抽取、身份证信息抽取等。然而,使用人力从...
探索图像数据中的隐藏信息:语义实体识别和关系抽取的奇妙之旅 1. 简介 1.1 背景 关键信息抽取 (Key Information Extraction, KIE)指的是是从文本或者图像中,抽取出关键的信息。针对文档图像的关键信息抽取任务作为OCR的下游任务,存在非常多的实际应用场景,如表单识别、车票信息抽取、身份证信息抽取等。然而,使用人力从...
实体识别和关系抽取作为自然语言处理中最底层的任务,一直受到研究学者的广泛关注。最早期的工作将关系三元组抽取看做两个流水线子任务,即首先识别出句子中的所有实体;然后根据句子的语义信息,对抽取出的实体对进行关系分类。 然而,上述方法往往会造成信息的错误累积传播问题,因为实体如果没有被正确识别,那么关系分类必然...
基于神经网络的实体识别和关系抽取联合学习 联合学习(Joint Learning)一词并不是一个最近才出现的术语,在自然语言处理领域,很早就有研究者使用基于传统机器学习的联合模型(Joint Model)来对一些有着密切联系的自然语言处理任务进行联合学习。例如实体识别和实体标准化联合学习,分词和词性标注联合学习等等。最近,研究者们在...
实体和关系的联合抽取问题作为信息抽取的关键任务,其实现方法可以简单分为两类:一类是串联抽取方法。另一类是联合抽取方法。 串联抽取方法将该问题分解为两个串联的子任务,即先采用实体识别模型抽取实体,再采用关系抽取模型得到实体对之间的关系,其优势是便于单独优化实体识别任务和关系抽取任务,但缺点是它们以获取三元组...
2、针对信息冗余问题,构建了基于分解标注策略的联合抽取模型,将实体和关系联合抽取任务转化为头实体识别、尾实体和关系抽取两个子任务,并且在训练阶段引入偏置权重缓解了标注策略带来的类别不平衡问题,在预测阶段基于句子语义关系对模型结果进行修正,提高了模型的性能。模型在 NYT 数据集上 F1 值达到了 88.6%,相较于其...