如图,在Rt△ABC中,∠ACB=90°,按以下步骤作图:①以C为圆心,以适当长为半径画弧交AC于E,交BC于F.②分别以E,F为圆心,以大于 1 2 EF的长为半径作弧,两弧相交于P;
如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,CD⊥AB于D点,其中E是BC的中点,以C为圆心,CD为半径作 C,则A,B,C,D,E五个点中,点___在 C外,点___在 C上,点___在 C内.
首先由Rt△ABC中,∠ACB=90°,AC=15,BC=20,利用勾股定理即可求得AB的长,然后由题意易得△ECF是等腰直角三角形,然后由三角形的面积公式,求得CE的长,继而求得DF的长,再利用勾股定理求得答案. 本题考点:翻折变换(折叠问题) 考点点评: 此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等,...
【答案】 分析:(1)求出BC,AC的值,推出DE为三角形ABC的中位线,求出即可; (2)求出AB上的高,CH,即可得出圆的半径,证△ADE∽△ACB得出比例式,代入求出即可. 解答: 解:(1)∵∠C=90°,∠A=30°, , ∴BC= AB=2 ,AC=6, ∵∠C=90°,DE⊥AC, ∴DE∥BC, ∵D为AC中点, ∴E为AB中点, ...
(3)根据相似三角形的性质可以得到 ,过点M画MH⊥AB于H,而 ,由此得到 ,在Rt△BHM中, ,由此即可确定旋转角α的度数. 解答: 解:(1)∵CB=CB', ∴ . ∵∠BAC= ,∠ABC=90°, ∴∠BCM=90°- . ∴∠CBB'=∠BCM. ∴BM=CM. 又∵∠BAC=∠ABM, ∴AM=BM.(2分) ∴BM是Rt△ABC斜边上的中线, ∴B...
如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若BD=4,CD=2,则AC的长是___. 扫码下载作业帮搜索答疑一搜即得 答案解析 查看更多优质解析 解答一 举报 作DE⊥AB于E,∵AD是∠BAC的平分线,∠ACB=90°,DE⊥AB,∴DE=DC=3,∴AC=AE,由勾股定理得,BE= BD2-DE2=2 3,设AC=AE=x,由勾股定...
如图,在Rt△ABC中,∠C=90°,∠A=30°, .若动点D在线段AC上(不与点A、C重合),过点D作DE⊥AC交AB边于点E. (1)当点D运动到线段AC中点时,DE= ; (2)点A关于点D的对称点为点F,以FC为半径作⊙C,当DE= 时,⊙C与直线AB相切. 【答案
在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A′B′C. (1)如图(1),当AB∥CB′时,设A′B′与CB相交于点D.证明:△A′CD是等边三角形; (2)如图2,当θ=45°时,设A′C与AB交于点P,求 的值. 查看本题试卷 2020年东营市中考数学压轴题型...
如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°;四边形DEFG为矩形,DE= cm,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.将Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止移动,设Rt△ABC与矩形DEFG重叠部分的面积为y,Rt
在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A′B′C. (1)如图(1),当AB∥CB′时,设A′B′与CB相交于点D.证明:△A′CD是等边三角形; (2)如图2,当θ=45°时,设A′C与AB交于点P,求 的值. 查看本题试卷 2020年东营市中考数学压轴题型...