如图,在Rt△ABC中,∠ACB=90°,AC=BC,在AC上取一点D,在AB上取一点E,使∠BDC=∠EDA,过点E作EF⊥BD于点N.交BC于点F,若CF=8,AD=11,则CD的长为___.
∵∠C=90°,AC=BC,∴△ABC是等腰直角三角形,∴∠A=45°,∴PO= 2 2AP,∵点P的运动速度是每秒 2cm,∴PO= 2 2×2t= 2tcm,∴ 1 2(12 2- 2t)= 2t,解得t=4,故答案为4 解析看不懂?免费查看同类题视频解析查看解答 特别推荐 热点考点 2022年中考真题试卷汇总 2022年初中期中试卷汇总 2022年...
由题意得:DF=DB,得到点F在以D为圆心,BD为半径的圆上,作 D; 连接AD交 D于点F,此时AF值最小,由点D是边BC的中点,得到CD=BD=3;而AC=4,由勾股定理得到AD=5,求得线段AF长的最小值是2,连接BF,过F作FH⊥BC于H,根据相似三角形的性质即可得到结论. 本题考点:翻折变换(折叠问题) 考点点评: 该题主要...
∵E是直角△ABC斜边AB上的中点,∴CE= 1 2AB= 5 2.∵M是BD的中点,E是AB的中点,∴ME= 1 2AD=1.∴在△CEM中, 5 2-1≤CM≤ 5 2+1,即 3 2≤CM≤ 7 2.故答案是: 3 2≤CM≤ 7 2. 作AB的中点E,连接EM、CE,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE和EM的...
如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°;四边形DEFG为矩形,DE= cm,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.将Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止移动,设Rt△ABC与矩形DEFG重叠部分的面积为y,Rt
(3)根据相似三角形的性质可以得到 ,过点M画MH⊥AB于H,而 ,由此得到 ,在Rt△BHM中, ,由此即可确定旋转角α的度数. 解答: 解:(1)∵CB=CB', ∴ . ∵∠BAC= ,∠ABC=90°, ∴∠BCM=90°- . ∴∠CBB'=∠BCM. ∴BM=CM. 又∵∠BAC=∠ABM, ∴AM=BM.(2分) ∴BM是Rt△ABC斜边上的中线, ∴B...
如图①,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与点A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM,射线AE于点F、D
如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将△ABC绕点A逆时针旋转得到△AB′C′,AB′与BC相交于点D,当B′C′∥AB时,CD=___.
首先由Rt△ABC中,∠ACB=90°,AC=15,BC=20,利用勾股定理即可求得AB的长,然后由题意易得△ECF是等腰直角三角形,然后由三角形的面积公式,求得CE的长,继而求得DF的长,再利用勾股定理求得答案. 本题考点:翻折变换(折叠问题) 考点点评: 此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等,根...
【答案】 分析:(1)求出BC,AC的值,推出DE为三角形ABC的中位线,求出即可; (2)求出AB上的高,CH,即可得出圆的半径,证△ADE∽△ACB得出比例式,代入求出即可. 解答: 解:(1)∵∠C=90°,∠A=30°, , ∴BC= AB=2 ,AC=6, ∵∠C=90°,DE⊥AC, ∴DE∥BC, ∵D为AC中点, ∴E为AB中点, ...