费马大定理,又被称为“费马最后的定理”。用现代数学语言写出来只有一行字,看上去再容易不过,一个中学生就能看懂:xn+yn=zn,当n>2时没有整数解。费马大定理如此重要,与数学的历史有着千丝万缕的联系,触及数论中所有重大的课题。最早可以追溯到古希腊的毕达哥拉斯学派,文艺复兴时期被数学家费马正式提出,而一直到20世纪,才得以最终的
一、引言 费马大定理得名于17世纪的法国数学家费马,他在研究丢番图方程时无意中提出了这个震惊世界的难题。费马宣称,对于任何大于2的整数n,方程x^n + y^n = z^n没有正整数解。这个看似简单的方程,却困扰了数学界长达358年,成为数学史上最著名的未解之谜。二、难题解析 费马大定理的难题在于其证明过程...
这就是著名的费马猜想。这个猜想在常人看来有点不可思议,这个方程在n=2时就是毕达哥拉斯定理(在中国称为勾股定理):,而满足毕达哥拉斯定理的整数解有无穷多组,怎么幂指数n一超过2,在无穷的非零自然数里面就再也找不到哪怕三个数来使方程成立了呢?由此大数学家的强大洞察力可见一斑。费马自己证明了n=...
费马大定理:证明:当n>2是整数时,则方程xn+yn=zn没有满足xyz≠0的整数解。费马大定理当中的方程是...
一、费马大定理是怎样被发现的?费马大定理也算是国际数学界中影响较大的一个数学问题,自1637年以来,无数数学大师们前仆后继地穷尽一生所学,为解决这一数学难题费尽心力,终于在众多数学大家的基础上,于1995年被英国数学家安德鲁·怀尔斯宣布获得完全证明,至此,这一问题也算成功解决,如今这一成果正被量子学...
[ 费马大定理 ] 解封跨越三个半世纪的尘世之锁 在数学的广袤星空中,费马大定理犹如一颗璀璨的明珠,闪烁着深邃与神秘的光芒。这个跨越了三百多年的谜题,以其独特的魅力,吸引了无数数学家为之沉醉、为之奋斗。它不仅仅是一个数学定理,更是一个象征着人类...
借助计算机的帮助,数学家们对500以内,然后在1000以内,再是10000以内的值证明了费马大定理,到八十年代,这个范围提高到25000,然后是400万以内。 但是,这种成功仅仅是表面的,即使那个范围再提高,也永远不能证明到无穷,不能宣称证明了整个定理。 破案似乎遥遥无期。
再者,费马大定理是数学研究的驱动力之一。这个神秘的定理及其曲折的证明过程激发了数学家的研究热情,推动了大量研究工作的开展。在追求证明费马大定理的过程中,数学家们创造出了许多重要的数学理论和方法。这些研究不仅推动了数学的发展,也为其他科学领域的研究提供了灵感和指导。虽然费马大定理最初可能看起来与现实...
1.费马大定理的提出 费马大定理最早由法国数学家皮埃尔·德·费马在1637年提出,他在一封写给数学家弗朗索瓦·德·洛让的信中写道:“我已经找到了这个非常有趣的定理,但是我没有足够的空间来证明它。”这个定理的原始形式是:“对于任意大于2的正整数n,方程a^n+b^n=c^n在正整数域上没有整数解。”在这个...