上述状态估计方法均建立在一对一观测模型的基础上,即单个传感器对单一目标进行状态估计,而这样的结构虽然能实现对动态目标的最优或次优估计,但抗干扰能力不强,鲁棒性较差;于是,使用多个传感器对同一目标进行融合状态估计的思路开始受到研究人员的关注[3,6-7],这就是多传感器融合状态估计研究的起点。2004年之前,多传感...
上述状态估计方法均建立在一对一观测模型的基础上,即单个传感器对单一目标进行状态估计,而这样的结构虽然能实现对动态目标的最优或次优估计,但抗干扰能力不强,鲁棒性较差;于是,使用多个传感器对同一目标进行融合状态估计的思路开始受到研究人员的关注[3,6-7],这就是多传感器融合状态估计研究的起点。2004年之前,多传感...
上述状态估计方法均建立在一对一观测模型的基础上,即单个传感器对单一目标进行状态估计,而这样的结构虽然能实现对动态目标的最优或次优估计,但抗干扰能力不强,鲁棒性较差;于是,使用多个传感器对同一目标进行融合状态估计的思路开始受到研究人员的关注[3,6-7],这就是多传感器融合状态估计研究的起点。2004年之前,多传感...
上述状态估计方法均建立在一对一观测模型的基础上,即单个传感器对单一目标进行状态估计,而这样的结构虽然能实现对动态目标的最优或次优估计,但抗干扰能力不强,鲁棒性较差;于是,使用多个传感器对同一目标进行融合状态估计的思路开始受到研究人员的关注[3,6-7],这就是多传感器...
1 集中式状态估计 本章首先介绍了多传感器融合状态估计中最早提出且最直接的思路,即集中式状态估计方法。在高斯线性系统的最小均方误差准则下,使用集中式卡尔曼滤波得到融合状态估计结果,是分布式状态估计的精度上限和比较基准。 引言中提到,单一传感器向多传感器状态估计推广能够提升状态估计精度,增强系统的鲁棒性。较为...