分析:本题考查复数的运算。我们需要利用复数的乘除法则进行计算。解题步骤 小学复数是指由实数和虚数构成的数,其中实数部分和虚数部分分别用a和bi表示,i为虚数单位,满足i²=-1。小学复数的重难点在于理解虚数的概念和运算规则。虚数是指不能表示为实数的数,如√-1,而虚数单位i就是√-1。小学复数的加减法和乘法...
第器民究总引片制族组已千存地主表场管第器民究总引片制族组已千存地主表场管解析:根据幂运算的法则,首先计算复数的模的平方:|3+2i|^2=(3^2)+(2^2)=9+4=13,然后计算复数的辐角乘以2:arg(3+2i)*2=arctan(2/3)*2=2arctan(2/3)。所以,复数(3+2i)的平方为13angle(2arctan(2/3))。
(1+2i)=1﹣2+3i=﹣1+3i,∴|z|=√(-1)2+32=√10.故答案为10.[点睛]对于复数的四则运算,要切实掌握其运算技巧和常规思路,如(a+bi)(c+di)=(ac-bd)+(ad+bc)i(a,b,c,dER).其次要熟悉复数相关概念,如复数a+bi(a,bER的实部为a、虚部为b、模为Va2+b-|||-2、对应点为a,b、共轭复数为...
复数的基本运算包括加法、减法、乘法和除法。1. 加法:将两个复数的实部和虚部分别相加。2. 减法:将两个复数的实部和虚部分别相减。3. 乘法:将两个复数的实部和虚部按照实数相乘的方式相乘,然后结合虚数单位i的平方规则。4. 除法:将两个复数按照分数的除法规则相除,并进行有理化。例如:(1 + 2i) + (3 ...
1 1、加法法则:复数的加法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,则它们的和是 (a+bi)+(c+di)=(a+c)+(b+d)i。2、减法法则:复数的减法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,则它们的差是 (a+bi)-(c+di)=(a-c)+(b-d)i。3、乘法法则...
1复数的运算公式 (1)加法运算 设z1=a+bi,z2=c+di是任意两个复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和:(a+bi)±(c+di)=(a±c)+(b±d)i。 (2)乘法运算 设z1=a+bi,z2=c+di是任意两个复数,则:(a+bi)(c+di)=(ac-bd)+(bc+ad)i。
加法法则复数的加法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,则它们的和是 (a+bi)+(c+di)=(a+c)+(b+d)i.两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。复数的加法满足交换律和结合律,即对任意复数z1,z2,z3,有: z1+z2=z2+z1;...
4 复数的计算法则 z1=2+4j z2=3-5j 复数的加法:实部加实部,虚部加虚部; z1+z2=(2+3)+(4+(-5))j=5-1j 复数的减法:实部减实部,虚部减虚部; z1-z2=(2-3)+(4-(-5))j=-1+9j 复数的乘法: 设z1=a+bj,z2=c+dj是任意两个复数,那么它们的积(a+bj)(c+dj)=(ac-bd)+(bc+ad)j...
1.加法法则:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i 复数的加法满足交换律和结合律,即对任意复数z1,z2,z3,则z1+z2=z2+z1,(z1+z2) +z3=z1+(z2+z3). 2.减法原则:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i 3.乘法原则:因i^2=-1,故z1*z2=(a+bi)*(c+di)=(ac-bd)...