摘要:传统K-means算法对初始聚类中心的选取和样本的输入顺序非常敏感,容易陷入局部最优。针对上述问题,提出了一种基于遗传算法的K-means聚类算法GKA,将K-means算法的局部寻优能力与遗传算法的全局寻优能力相结合,通过多次选择、交叉、变异的遗传操作,最终得到最优的聚类数和初始质心集,克服了传统K-means算法的局部性和...
一种基于遗传算法的K-means聚类算法 摘要:传统K-means算法对初始聚类中心的选取和样本的输入顺序非常敏感,容易陷入局部最优。针对上述问题,提出了一种基于遗传算法的K-means聚类算法GKA,将K-means算法的局部寻优能力与遗传算法的全局寻优能力相结合,通过多次选择、交叉、变异的遗传操作,最终得到最优的聚类数和初始...
GA-kmeans聚类算法,通过GA遗传算法优化kmeans聚类,最后通过CHI DBI 轮廓系数对比分析。 程序设计 完整源码和数据获取方式私信博主回复基于GA遗传算法优化kmeans聚类(Matlab)。 %% ===清空工作区=== clc; clear; close all; addpath(genpath(pwd)); %% ===导入数据=== data = xlsread('序列数据.xlsx'); X...
本发明公开了一种基于遗传算法改进的Kmeans算法的用电用户聚类方法,包括:对数据进行预处理并生成初始群体;计算数据的差异度,并随机选取k个点作为聚类中心并聚类;计算每个聚类的差异度;分别取每个聚类中心的坐标,聚类点平均值坐标点的个数作为特征,对K个聚类结果特征进行交叉变异,得到的新的子代作为候选的聚类结果的...
可以做图像分割,数据挖掘,目前,针对K-Means算法研究及应用,尤其是在文本聚类挖掘层面的应用研究越来越多。K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,
基于遗传算法的K―means初始化EM算法可以同时 估计模型阶数和参数。试验结果表明,该算法具有更好的聚类效果。 关键词:混合高斯模型;遗传算法;K―means;聚类应用 中图分类号:TN911.7z文献标识码:A文章编号:1004― 373X201015―0102―02 K-meansInitializationEMandIts ...
K-means算法是一种应用非常广泛的聚类分析方法,具有简洁、高效、可伸缩性强等优点,一般用簇内数据对象的均值表示K-means算法每个簇的中心[1]。但传统K-means算法存在诸多不足之处。例如,传统K-means算法对初始聚类中心敏感、算法需要指定参数K的值、输入的不同K值随目标准则函数进行不同次数的迭代、聚类结果波动大...
k-means算法的准确度在一定程度上取决于你所选的核函数,并且一般这种聚类多半是以凸函数集成型。而...
基于改进遗传算法的K-means聚类分析
K-means聚类算法 1. Research on a method for building up a patent map based on k-means clustering algorithm 基于k-means聚类算法的专利地图制作方法研究 2. In order to obtain better clustering results,after analyzing the advantages and disadvantages of hierarchical and k-means clustering algorithms,a...