基于粒子群算法(Particle Swarm Optimization, PSO)优化BP(Back Propagation)神经网络的PID控制算法是一种结合智能优化技术和传统控制方法的先进方案。在这一方法中,PSO 用于优化 BP 神经网络的权重和偏差参数,然后利用优化后的神经网络设计 PID 控制器的参数。这种方法能够提高 PID 控制器的性能,如快速响应和更好的鲁...
简介:基于粒子群算法优化BP神经网络的PID控制算法(Matlab代码实现) 一、 概述 传统比例-积分-微分(Proportion Integral Derivative,PID)控制器存在参数整定困难,不能在线实时调整以及面对复杂非线性系统时应用效果不佳等问题,提出一种基于粒子群算法(Particle Swarm Optimization,PSO)优化的反向传播(Back Propagation,BP)神...
传统比例-积分-微分(Proportion Integral Derivative,PID)控制器存在参数整定困难,不能在线实时调整以及面对复杂非线性系统时应用效果不佳等问题,提出一种基于粒子群算法(Particle Swarm Optimization,PSO)优化的反向传播(Back Propagation,BP)神经网络PID控制方法。将BP神经网络与PID控制器相结合,利用BP神经网络的自适应学...
传统比例-积分-微分(Proportion Integral Derivative,PID)控制器存在参数整定困难,不能在线实时调整以及面对复杂非线性系统时应用效果不佳等问题,提出一种基于粒子群算法(Particle Swarm Optimization,PSO)优化的反向传播(Back Propagation,BP)神经网络PID控制方法.将BP神经网络与PID控制器相结合,利用BP神经网络的自适应学习...
比例-积分-微分控制器神经网络模型优化粒子群算法传统比例-积分-微分(Proportion Integral Derivative,PID)控制器存在参数整定困难,不能在线实时调整以及面对复杂非线性系统时应用效果不佳等问题,提出一种基于粒子群算法(Particle Swarm Optimization,PSO)优化的反向传播(Back Propagation,BP)神经网络PID控制方法.将BP神经网...
一、粒子群算法优化BP神经网络PID控制简介 BP神经网络PID控制算法 传统PID控制器作为一种线性控制器,具备结构,容易实现的优点,其基本原理是将系统的实际输出值和期望输出值之间的偏差按照比例、积分和微分的形式进行线性组合,构成控制量,实现对目标的反馈控制,控制性能取决于P、I、D 3个参数,然而由于传统PID的控制参数...
传统比例-积分-微分(Proportion Integral Derivative,PID)控制器存在参数整定困难,不能在线实时调整以及面对复杂非线性系统时应用效果不佳等问题,提出一种基于粒子群算法(Particle Swarm Optimization,PSO)优化的反向传播(Back Propagation,BP)神经网络PID控制方法。将BP神经网络与PID控制器相结合,利用BP神经网络的自适应学...
传统比例-积分-微分(Proportion Integral Derivative,PID)控制器存在参数整定困难,不能在线实时调整以及面对复杂非线性系统时应用效果不佳等问题,提出一种基于粒子群算法(Particle Swarm Optimization,PSO)优化的反向传播(Back Propagation,BP)神经网络PID控制方法。将BP神经网络与PID控制器相结合,利用BP神经网络的自适应学...