3DSSD作者提出像PointRCNN这种基于原始点云的二阶段3D检测方法,在第一阶段往往利用Set Abstraction层(SA)进行不断的下采样、分组与特征提取,然后利用Feature Propagation层(FP)对SA的输出进行不断上采样与特征传播。 利用语义分割获得了...
点云是一种表示3D空间数据的方式,它由一组离散的点组成,每个点都包含了空间坐标和其他属性信息。基于点云的3D目标检测算法主要利用这些点的空间分布和属性信息来识别物体。 一种常见的基于点云的3D目标检测算法是使用深度学习模型来处理点云数据。这类模型通常会将点云数据转化为一种适合深度学习处理的形式,如体素网...
通过Voxel-to-keypoint与keypoint-to-grid这两个point-voxel特征交互的过程,显著增强了PV-RCNN的结构多样性,使其可以从点云数据中学习更多样性的特征,来提升最终的3D检测性能。算法在仅使用LiDAR传感器的setting下,在自动驾驶领域Waymo Open Challenge点云挑战赛中取得了(所有不限传感器算法榜单)三项亚军、Lidar单模...
3DSSD作者提出像PointRCNN这种基于原始点云的二阶段3D检测方法,在第一阶段往往利用Set Abstraction层(SA)进行不断的下采样、分组与特征提取,然后利用Feature Propagation层(FP)对SA的输出进行不断上采样与特征传播。利用语义分割获得了前景点后,这些方法以每个前景点为中心进行3D检测框的提议(第一阶段的粗提议)。粗...