通过 Q - Learning,机器人可以学习到从初始位置到目标位置的最优路径规划策略。在机器人路径规划问题中,机器人即为智能体,其所处的大规模栅格地图及相关物理规则等构成了环境 。智能体通过传感器感知环境的状态,并根据学习到的策略在环境中执行动作,如向上、向下、向左、向右移动等,环境则根据智能体的动作反馈相应的...
1 模型 提出了一种基于强化学习的机器人路径规划算法,该算法将激光雷达所获取的移动机器人周围障碍物信息与目标点所在方位信息离散成有限个状态,进而合理地设计环境模型与状态空间数目;设计了一种连续的报酬函数,使得机器人采取的每一个动作都能获得相应的报酬,提高了算法训练效率.最后在Gazebo中建立仿真环境,对该智能...
本文采用一种基于Q‑学习算法的路径规划方法,其方法为:第一步:获得基本信息;第二步:确定图中的障碍物坐标;第三步:对图形进行分割处理;第四步:利用Q‑学习算法规划路径;第五步:得出最优路径,根据学习结果用MATLAB绘制出最优的路径。有益效果:在栅格环境下进行仿真实验,并成功地应用在多障碍物环境下移动机器人...
通过 Q - Learning,机器人可以学习到从初始位置到目标位置的最优路径规划策略。在机器人路径规划问题中,机器人即为智能体,其所处的大规模栅格地图及相关物理规则等构成了环境 。智能体通过传感器感知环境的状态,并根据学习到的策略在环境中执行动作,如向上、向下、向左、向右移动等,环境则根据智能体的动作反馈相应的...
简介:本项目基于MATLAB 2022a,通过强化学习算法实现机器人在栅格地图中的路径规划。仿真结果显示了机器人从初始位置到目标位置的行驶动作序列(如“下下下下右右...”),并生成了详细的路径图。智能体通过Q-Learning算法与环境交互,根据奖励信号优化行为策略,最终学会最优路径。核心程序实现了效用值排序、状态转换及动作...