除了VAE,后续还有很多类似的模型比如条件变分自编码器 (Conditional VariationalautoEncoder),生成对抗编码器(VAEGAN)等等,这个领域的不断发展也带了更更好的生成类模型,感兴趣的同学可以去搜一搜论文,或者直接运行 MATLAB 中的实例跑一跑,修改参数做一些实验,或许下一个发明 VA...
【2】https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://github.com/vaxin/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/variational_autoencoder.py 里面的每一步,都有配合本文章的对照解释。 5. 延伸思考 之所以关注VAE,是从文献[4]引发的,由于视觉早期的概念形成对于之后的视觉认知起了十分关键的作用,我们有理由相信,在神经网络训练时,利用这种递...
4200 1 20:10 App 变分自编码器-Variational Autoencoders-数学解释 360 -- 28:18 App 【公式推导】条件流匹配CFM:证明FM和CFM的目标关于参数的梯度一致【3.2节】【定理2】 1527 -- 20:52 App 3.1 从条件概率路径pt(x|x1)和条件向量场ut(x|x1)构造pt和ut【公式推导】 1565 1 21:40 App 【公式推导...
变分自编码器(Variational Autoencoder,VAE)是一种生成模型,结合了自动编码器(Auto-Encoder)和概率潜变量模型的思想。它可以用于学习数据的潜在表示,并且可以生成与原始数据类似的新样本。 VAE的主要思想是通过学习数据的概率分布来实现数据的压缩和生成。它由两部分组成:编码器(Encoder)和解码器(Decoder)。
变分自编码,英文是Variational AutoEncoder,简称VAE。它是包含隐变量的一种模型 变分自编码器与对抗生成网络类似,均是为了解决数据生成问题而生的。在自编码器结构中,通常需要一个输入数据,而且所生成的数据与输入数据是相同的。但是通常希望生成的数据具有一定程度的不同,这需要输入随机向量并且模型能够学习生成图像的风...
Variational Auto-encoder(VAE)变分自编码器,是无监督复杂概率分布学习的最流行的方法之一。 VAE的最大特点是模仿自动编码机的学习预测机制,在可测函数之间进行编码、解码。同GAN类似,其最重要的idea是基于一个令人惊叹的数学事实: 对于一个目标概率分布,给定任何一种概率分布,总存在一个可微的可测函数,将...
变分自编码器(Variational Autoencoder, VAE)是一种生成模型,通过学习数据的隐空间表示(latent space),能够生成与训练数据分布相似的新样本。与传统自编码器不同,VAE 在编码和解码过程中引入了概率模型,可以生成更具多样性和连续性的样本。 应用使用场景
自编码器(Autoencoder)是一种神经网络模型,由编码器和解码器组成。编码器将输入数据压缩成一个潜在空间的表示(即编码),解码器则将这种表示重构为原始数据。 设定: 输入数据为 编码器将 映射到潜在空间中的潜在变量 解码器从 重构出 自编码器的目标是使得输入数据和重构数据之间的差异最小化,通常使用均方误差(MSE...
变分自编码器系列 3 - 编码与重构:构建与训练VAE 文/Renda 在当今的人工智能领域,变分自编码器(Variational Autoencoders, VAE)已经成为一个非常受欢迎的研究主题,特别是在生成模型的开发中。从简单的图像生成到复杂的数据去噪和特征提取,VAE的应用范围日益扩大,显示出其在深度学习和人工智能研究中的广泛潜力。在...