4) 构建灰度共生矩阵,其尺寸通常为 N x N,其中 N 为图像的灰度级别数量。共生矩阵中的元素 GLCM(i, j) 表示在指定方向、距离下,像素灰度级别 i 和 j 同时出现的次数。 5) 对共生矩阵进行归一化,得到共生概率矩阵。共生概率矩阵中的元素 GLCM_prob(i, j) 表示在指定方向、距离下,像素灰度级别 i 和 j ...
共生灰度矩阵共生灰度矩阵 灰度共生矩阵(Gray-level Co-occurrence Matrix,GLCM)是一种用于纹理分析的统计方法,它描述了图像中灰度级空间依赖性的矩阵。这种矩阵反映了图像灰度关于方向、相邻间隔和变化幅度的综合信息,是分析图像的局部模式和它们排列规则的基础。在灰度共生矩阵中,每个元素表示在特定方向和距离下,两个...
灰度共生矩阵(GLCM)的统计方法是20世纪70年代初由R.Haralick等人提出的,Haralick提出了14种基于灰度共生矩阵计算出来的统计量:即:能量、熵、对比度、均匀性、相关性、方差、和平均、和方差、和熵、差方差、差平均、差熵、相关信息测度以及最大相关系数. 下面主要说一下具有代表性且常用的四个统计量. ① 角二阶矩...
灰度共生矩阵(Gray Level CO-Occurrence Matrix-GLCM)是图像特征分析与提取的重要方法之一,在纹理分析、特征分类、图像质量评价灯方面都有很重要的应用,其基本原理图示如下: 左侧是一个图像,可以看出最小的灰度级别是1,最大的灰度级别是8,共有8个灰度级别。右侧对应的灰度共生矩阵,左上角第一行与第一列的坐标(1...
在计算得到共生矩阵之后,往往不是直接应用计算的灰度共生矩阵,而是在此基础上计算纹理特征量,我们经常用反差、能量、熵、相关性等特征量来表示纹理特征。 (1)反差:又称为对比度,度量矩阵的值是如何分布和图像中局部变化的多少,反应了图像的清晰度和纹理的沟纹深浅。纹理的沟纹越深,反差越大,效果清晰;反之,对比值小...
灰度共生矩阵(Gray-level Co-occurrence Matrix,GLCM) 又叫做灰度共现矩阵 概念: 像素灰度在空间位置上的反复出现形成图像的纹理,GLCM是描述具有某种空间位置关系两个像素灰度的联合分布 含义: 就是两个像素灰度的联合直方图,是一种二阶统计量 就是两个像素点的关系 ...
灰度共生矩阵(Grey Level Co-occurrence Matrix)也叫做空间灰度级依赖矩阵(SGLDM),它是一种基于统计的纹理特征提取的方法。 1.灰度共生矩阵的基本原理 灰度共生矩阵中的元素,表示的是具有某种空间位置关系的两个像素灰度的联合分布。 1.1 定义 考虑二阶统计量,研究有空间关系的像素对: ...
灰度共生矩阵 灰度共⽣矩阵 ⼀、基本理论 1、背景 20世纪70年代,R.Haralick等⼈提出了⽤灰度共⽣矩阵(Gray-level Co-occurrence Matrix,GLCM)来描述纹理特征。2、概念 灰度共⽣矩阵(GLDM)的统计⽅法是20世纪70年代初由R.Haralick等⼈提出的,它是在假定图像中各像素间的空间分布关系包含了图像纹理...
灰度直方图是对图像上单个像素具有某个灰度进行统计的结果,而灰度共生矩阵是对图像上保持某距离的两像素分别具有某灰度的状况进行统计得到的。 GLCM 所代表的含义 灰度共生矩阵元素所表示的含义,以(1,1)点为例,GLCM(1,1)值为1说明左侧原图只有一对灰度为1的像素水平相邻。GLCM(1,2)值为2,是因为原图有两对灰度...