DeepAC 结合了传统方法和深度学习方法的优势,提出了一个深度主动轮廓模型,以解决六自由度物体跟踪的问题。给定初始位姿,首先物体 CAD 模型会投影到图像平面上以获得初始轮廓,然后一个轻量级网络用于预测该轮廓应如何移动,以匹配图像中物体的真实边界,从而为物体位姿优化提供梯度。最后,提出了一种可微的优化算法,可以使用...
DeepAC 结合了传统方法和深度学习方法的优势,提出了一个深度主动轮廓模型,以解决六自由度物体跟踪的问题。给定初始位姿,首先物体 CAD 模型会投影到图像平面上以获得初始轮廓,然后一个轻量级网络用于预测该轮廓应如何移动,以匹配图像中物体的真实边界,从而为物体位姿优化提供梯度。最后,提出了一种可微的优化算法,可以使用...
DeepAC 结合了传统方法和深度学习方法的优势,提出了一个深度主动轮廓模型,以解决六自由度物体跟踪的问题。给定初始位姿,首先物体 CAD 模型会投影到图像平面上以获得初始轮廓,然后一个轻量级网络用于预测该轮廓应如何移动,以匹配图像中物体的真实边界,从而为物体位姿优化提供梯度。最后,提出了一种可微的优化算法,可以使用...
DeepAC 结合了传统方法和深度学习方法的优势,提出了一个深度主动轮廓模型,以解决六自由度物体跟踪的问题。给定初始位姿,首先物体 CAD 模型会投影到图像平面上以获得初始轮廓,然后一个轻量级网络用于预测该轮廓应如何移动,以匹配图像中物体的真实边界,从而为物体位姿优化提供梯度。最后,提出了一种可微的优化算法,可以使用...
主动轮廓模型(重点) V={v1,v2,...,vL}是边界上的点。其中vi=(xi,yi). 能量函数: 内部能量函数: Eint(vi)是依赖于轮廓形状的能量函数。 推动主动轮廓形状的改变并保持轮廓上点间的距离。 Econ:连续能量(切向力),迫使不封闭的曲线变成直线而封闭的曲线变成圆环。
文中受主动轮廓模型的启发,提出一个整合了区域和长度的信息的新的损失函数,可以用在基于类似于U-Net的深度学习框架的医学图像分割中。工作流如Figure.2所示。文中提出的损失函数用AC表示,在3.1中会有介绍,所使用的CNN架构将会在3.2中介绍。 3.1 AC损失函数 ...
1、主动轮廓模型 1988年,Kass等人提出了主动轮廓模型,将图像分割问题转换为求解能量泛函最小值问题,为图像分割提供一种全新的思路,称为研究的重点和热点。主动轮廓模型的主要原理通过构造能量泛函,在能量函数最小值驱动下,轮廓曲线逐渐向待检测物体的边缘逼近,最终分割出目标。由于主动轮廓模型利用曲线演化定位目标的边缘...
51CTO博客已为您找到关于opencv 主动轮廓模型的相关内容,包含IT学习相关文档代码介绍、相关教程视频课程,以及opencv 主动轮廓模型问答内容。更多opencv 主动轮廓模型相关解答可以来51CTO博客参与分享和学习,帮助广大IT技术人实现成长和进步。
主动轮廓线模型是一个自顶向下定位图像特征的机制,用户或其它自己主动处理过程通过事先在感兴趣目标附近放置一个初始轮廓线,在内部能量(内力)和外部能量(外力)的作用下变形外部能量吸引活动轮廓朝物体边缘运动,而内部能量保持活动轮廓的光滑性和拓扑性,当能量达到最小时,活动轮廓收敛到所要检測的物体边缘。