解析 解: 解:与直线l:Ax+By+C=0垂直的直线方程为Bx-Ay+C1=0. 故答案为: Bx-Ay+C1=0 根据直线l:Ax+By+C=0可求得斜率为k1=- AB,根据相互垂直的直线的斜率之积为-1,可求得所求直线的斜率为k2= BA,则直线方程可表示出.反馈 收藏
解析 与直线l:Ax+By+C=0垂直的直线方程为Bx-Ay+C1=0. 故答案为: Bx-Ay+C1=0 结果一 题目 与直线l:Ax+By+C=0垂直的直线可表示为. 答案 与直线l:Ax+By+C=0垂直的直线方程为Bx-Ay+C1=0. 故答案为:Bx-Ay+C1=0 相关推荐 1与直线l:Ax+By+C=0垂直的直线可表示为....
百度试题 结果1 题目与直线Ax+By+C=0垂直的直线的方程可设为 .相关知识点: 试题来源: 解析 【解析】 与直线Ax+By+C=0垂直的直线的方程 可设为Bx-Ay+C'=0. 【答案】 Bx-Ay+C'=0反馈 收藏
根据题意,要求直线与直线Ax+By+C=0垂直,可以设其方程为Bx-Ay+m=0,又由其过点P(x0,y0),则有Bx0-Ay0+m=0,即m=-(Bx0-Ay0),则要求直线的方程为:Bx-Ay-(Bx0-Ay0)-0,即B(x-x0)-A(y-y0)=0,故选:D. 结果一 题目 过点P(x0,y0)与直线Ax+By+C=0垂直的直线方程是( ).A...
【解析】根据两条直线垂直的充要条件,可知斜率存在时,互为负倒数,故直线垂直的一条直线的方程是Bx-Ay+C=0当斜率不存在时,结论同样成立故选c.【直线的一般式方程与直线的垂直关系】直线方程I_1:A_1x+B_1y+C_1=0 与2组成的位置关系l_2:y=k_2x+b_2 I_2:A_2x+B_2y+C_2=0 方程组垂直k_1k_...
【解答】解:设直线方程为Bx﹣Ay+c=0, 代入点P0(x0 , y0)可得c=﹣Bx0+Ay0 , 故选B.【分析】设直线方程为Bx﹣Ay+c=0,代入点P0(x0 , y0)可得c,即可得出结论.结果一 题目 (3分)过点P0(x0,y0)且与直线Ax+By+C=0垂直的直线方程为( ) A. Bx+Ay﹣Bx0﹣Ay0=0 B. Bx﹣Ay﹣Bx0+Ay0=...
与直线Ax+By+c=0(A、B不全为0)垂直的直线可设为Bx-Ay+D=0(A、B不全为0),与之平行的直线可设为Ax+By+E=0(A、B不全为0)故答案为:Bx-Ay+D=0;Ax+By+E=0 本题考查了两条直线的平行和垂直关系,考查了与已知直线平行或垂直的直线方程的特点,由该特点可知设方程的方法,化简计算过程 结果二...
当 B =0时,直线 Ax + By + C =0的方程为 Ax + C =0,过点 P 与它垂直的方程为 y = y 0 ,适合上面所求方程 Bx - Ay + Ay 0 - Bx 0 =0. 同理,当 A =0时,过点 P 与直线 Ax + By + C =0垂直的直线方程为 x = x 0 ,也适合上面所求方程. 总之,过点 P ( x 0 , ...
与直线Ax+By+C=0平行的直线方程总可以写成Ax+By+m=0, 与直线Ax+By+C=0垂直的直线方程总可以写成Bx-Ay+N=0 综上所述,答案:与直线Ax+By+C=0平行的直线方程总可以写成Ax+By+m=0,与直线Ax+By+C=0垂直的直线方程总可以写成Bx-Ay+N=0.结果...
百度试题 结果1 题目(1)与直线Ax+By+ C =0垂直的直线方程可设为Br-Ay+m=0(m为参数). 相关知识点: 试题来源: 解析 (1)与直线Ar+By+C =0垂直的直 线方程可设为Br-Ay+m=0(m为参数 O. 反馈 收藏