什么是三角形的外角平分线定理? 答案 1、由角平分线的性质联想两线段相等; 2、利用外角平分线定理,在较长的线段中截取一段与求加法运算的两条线段中的一条相等,然后证明另一端等于加法运算的另一条线段; 3、利用外角平分线定理,在较短的一条线段的基础上通过延长再截取的方法将求和的两条线段连结在一起。三角...
解析 BD:CD=AB:AC 三角形内角平分段性质定理三角形内角平分线分对边所成的两条线段,和两条邻边成比例在三角形abc中,角A的外角平分线交BC的延长线于D则:BD:CD=AB:AC 证明:过点d作de平行ac交ba于e因为角cad=角dae 所以角cad=dae=ade 所以ae=de BD:CD=BE:AE=BE:DE=BA:AC...
三角形外角平分线 三角形外角平分线是一个数学定理,指的是三角形外角的角平分线。1.三角形ABC,角ABC和角BCA的外角平分线组成的角度数为(90度-1/2角A),2.角ABC的平分线和角BCA的外角平分线组成的角度数为1/2角A。3.角ABC的和角BCA平分线组成的角度数为(90度+1/2角A)。
定理一的推广 外角平分线上任意一点到角两边所在直线的距离相等。如图,点 在 的外角平分线上,过点 作 于 ,作 于 ,则 。定理二的推广 三角形外角的平分线与对边延长线相交,外分对边的比例与另两边的比例相等。如图,是 的外角平分线于 边所在直线的交点,则 事实上,将三角形内、外角平分线与对边的...
定理表述:三角形的一个外角平分线与这个角的对边平行,且等于这个对边的一半。不过,更准确的表述应该是关于外角平分线所截得的线段的比例关系。 设三角形 (ABC) 中,(D) 是边 (BC) 延长线上的一点,(AE) 是 (\angle BAC) 的外角平分线,且交边 (BC) 的延长线于点 (E)。则根据三角形外角平分线定理,有...
三角形外角的平分线如果和对边的延长线相交,它按照夹相应角的两边的比外分对边。三角形外角的平分线如果和对边的延长线相交,它按照夹相应角的两
∼△CAB) BDC则(BD)/(DC)=(AB)/(AC)即三角形内角平分线定理正确答图3证法2:如答图4,作 BB_1⊥AD 于B1,作 CC_1⊥AD 于C1则 Rt△BB_1DacksimRt△CC_1D 角角),且 Rt△BB_1AacksimRt△CC_1A (角角)(BD)/(DC)=(BB_1)/(CC_1)=(AB)/(AC)同理可证,三角形的外角平分线定理正确...
三角形外角平分线定理:三角形任意两边之比等于它们夹角的平分线分对边之比。 角平分线定理: 从一个角的顶点引出的把这个角分成两个相等的角的射线,叫做这个角的角平分线。 三角形的一个角(内角)的角平分线交其对边的点所连成的线段,叫做这个三角形的一 条角平分线。 定理1:角平分线上的点到这个角两边的距...
三角形外角平分线定理:三角形的外角平分线外分对边所成的两条线段和相邻两边对应成比例。已知如图.△ABC中,∠BAC的外角平分线交BC的延长线于点 D,求证:BD︰CD=AB︰AC。证明:过C作AD的平行线交AB于点E。∴BD︰CD=AB︰AE,∠1=∠AEC∠CAD=∠ACE∵∠1=∠CAD ∴∠AEC=∠ACE∴AE=AC ∴BD︰CD=AB︰ACA...