三角函数的导数公式 正弦函数:(sinx)'=cosx 余弦函数:(cosx)'=-sinx 正切函数:(tanx)'=sec²x 余切函数:(cotx)'=-csc²x 正割函数:(secx)'=tanx·secx 余割函数:(cscx)'=-cotx·cscx 反三角函数的导数公式 反正弦函数:(arcsinx)'=1/√(1-x^2) 反余弦函数:(arccosx)'=-1/√(1-x^2) 反...
方法/步骤 1 三角函数的导数公式 正弦函数:(sinx)'=cosx余弦函数:(cosx)'=-sinx正切函数:(tanx)'=sec²x余切函数:(cotx)'=-csc²x正割函数:(secx)'=tanx.secx 余割函数:(cscx)'=-cotx·cscx 2 2.反三角函数的导数公式 反正弦函数:(arcsinx)'=1/√(...
2.三角函数导数公式表 (sinx)′=cosx,(cosx)′=−sinx(tanx)′=sec2x,(cotx)′=−csc2x(secx)′=secxtanx,(cscx)′=−cscxcotx 记忆技巧:正弦正切正割求导后的函数都是正的,余弦余切余割求导后的函数都是负的。 2.1.正切求导过程 (...
1. 正弦函数的导数: [ frac{d}{dx}(sin x) = cos x ] 2. 余弦函数的导数: [ frac{d}{dx}(cos x) = -sin x ] 3. 正切函数的导数: [ frac{d}{dx}( an x) = sec^2 x = frac{1}{cos^2 x} ] 4. 余切函数的导数: [ frac{d}{dx}(cot x) = -csc^2 x = -frac{1}{sin^...
基本初等函数求导公式:1、y=c y'=0;2、y=α^μ y'=μα^(μ-1);3、y=a^x y'=a^x lna;y=e^x y'=e^x;4、y=loga,x y'=loga,e/x;y=lnx y'=1/x;5、y=sinx y'=cosx。 6、y=cosx y'=-sinx 7、y=tanx y'=(secx)^2=1/(cosx)^2 ...
三角函数的求导公式表介绍如下:正弦函数:(sinx)'=cosx 余弦函数:(cosx)'=-sinx 正切函数:(tanx)'=sec²x 余切函数:(cotx)'=-csc²x 正割函数:(secx)'=tanx·secx 余割函数:(cscx)'=-cotx·cscx 反正弦函数:(arcsinx)'=1/√(1-x^2)反余弦函数:(arccosx)'=-1/√(1...
三角函数求导公式如下:1、正弦函数求导:正弦函数的一般形式是y= sin(x),其中x是角罩迅衫度(以弧度为单位)。正弦函数的导数是:y=cos(x)。正弦函数在一个周期内的图形是一个波浪形,其斜率在每个周期内都在变化。导数就是正弦函数的斜率,物腔它表示函数在某一点的局部变化率。cos(x)...
大学三角函数求导公式表介绍如下:以(cosx)' = - sinx为例,推导过程如下:设f(x)=sinx;(f(x+dx)-f(x))/dx=(sin(x+dx)-sinx)/dx=(sinxcosdx+sindxcosx-sinx)/dx因为dx趋近于0cosdx趋近于1(f(x+dx)-f(x))/dx=sindxcosx/dx根据重要极限sinx/x在x趋近于0时等于一,(f(x+dx...
在数学领域,三角函数的求导公式是解决导数问题的重要工具。下面列出了几个常用的三角函数导数公式:对于正弦函数sin(x),其导数为cos(x)。对于余弦函数cos(x),其导数为-sin(x)。对于正切函数tan(x),其导数为sec^2(x)。对于余切函数cot(x),其导数为-csc^2(x)。对于正割函数sec(x),其导数...