三次样条插值函数c语言程序 #include<iostream> #include<iomanip> usingnamespacestd; constintMAX=50; floatx[MAX],y[MAX],h[MAX]; floatc[MAX],a[MAX],fxym[MAX]; floatf(intx1,intx2,intx3){ floata=(y[x3]-y[x2])/(x[x3]-x[x2]); floatb=(y[x2]-y[x1])/(x[x2]-x[x1]...
1、/*函数说明*/px py为已知的数据点,xs为要插值的x坐标,最终会得到xs坐标下的y值using System;using System.Collections.Generic;using System.Linq;using System.Text;namespace spline class Program static void Main(string args) point points = new point13; double px = 64, 304, 544, 1035, 1502,...
c[nm1] = 0.0;if (n != 3){ c[0] = c[2] / (x[3] - x[1]) - c[1] / (x[2] - x[0]);c[nm1] = c[n-2] / (x[nm1] - x[n-3]) - c[n-3] / (x[n-2] - x[n-4]);c[0] = c[0] * d[0] * d[0] / (x[3] - x[0]);c[nm1] ...
三次样条插值函数的C语言实现(以例题为数据源,力荐)#include<stdio.h> //#include<stdlib.h> #include<graphics.h> #include<conio.h> #definen4 voidmain() { doublea[n],b[n],c[n],d[n]; doublex[n],y[n],m[n],h[n]; doublef[n],bt[n],gm[n]; doubles,xx; doublef1,f2; inti...
#include<stdio.h>//#include<stdlib.h>#include<graphics.h>#include<conio.h>#definen4voidmaindoublea[n]b[n]c[n]d[n];doublex[n]y[n]m[n]h[n];doublef[n]bt[n]gm[n];doublesxx;doublef1f;inti;i=0;FILE*fp;fp=fopen"scyt.txt""r";while!feoffpfscanffp"%lf%lf\n"&x[i]&y
#include//#include#include#include#definen4voidmain(){doublea[n],b[n],c[n],d[n];doublex[n],y[n],m[n],h[n];doublef[n],bt[n],gm[n];doubles,xx;doublef1,f2;inti;i=0;FILE*fp;fp=fopen("scyt.txt","r");while(!feof(fp)){fscanf(fp,"%lf,%lf\n",&x[i],&y[i]);/...
要求横轴X[8]={0, 1 ,2,4,6,8,10},纵轴Y[14]={0,0.4,0.6,0.8,0.9,1.0,1.1,1.2,1.5,2.0,2.5,3.0,3.5,4.0},C[13][7]={...数据},组成一个[14][8]的数组。进行插值,因为双变元抛物线插值精度不高, ,作为一个子函数去调用,格式是int32(double x,double y,int N1,int N2,double *Y),...
c. 节点达到二阶连续 d. 左右两端点处特性(自然边界,固定边界,非节点边界) 根据定点,求出每段样条曲线方程中的系数,即可得到每段曲线的具体表达式。 由此,我们可以知道: 插值和连续性: 微分连续性: 样条曲线的微分式: 将步长 a.由 推出 ...
void CSpline::Spline1(double *xa,double *ya,int n,double *&m,double bound1,double bound2) { // 追赶法解方程求二阶偏导数 double f1=bound1,f2=bound2; double *a=new double[n]; // a:稀疏矩阵最下边一串数 double *b=new double[n]; // b:稀疏矩阵最中间一串数 ...
基本方程为l(i)m(i-1)+2m(i)+u(i)m(i+1)=g(i),i=1,2,...,n-1 //目前有n-1个方程,n+1个未知量(从m0到mn),需要添加两个边界条件 for(inti= 0;i<plength- 1;i++)//共有plength(n+1)个点,h总有plength-1(n)个值 {