对象检测中的 mAP(平均精度)指标是根据 IoU(交集超过并集)进行评估的。因此,BBR使用基于 IoU 的损失函数来实现计算mAP,mAP的典型计算公式与表示如下: 但是这种最原始的IoU并交比的损失计算方式是有缺陷的,如当预测框与真实框没有相交的时候,IoU损失就是0,这样就导致了没有梯度,导致训练的效果就会打折许多。 改进...
MPDIoU(Intersection over Union with Minimum Points Distance)是一种用于高效且准确的边界框回归的损失函数。 2.1 IoU计算原理 IoU(Intersection over Union)即交并比,用于衡量预测边界框和真实边界框的重合程度。 1. 交集计算: - 首先确定预测边界框和真实边界框的交集区域。 - 对于两个以左上角和右下角坐标表示...
通过分析边界框回归模型,inner_iou论文中发现区分不同的回归样本,并使用不同尺度的辅助边界框来计算损失,可以有效加速边界框回归过程。对于高IoU样本,使用较小的辅助边界框计算损失可加速收敛,而较大的辅助边界框适用于低IoU样本。 本文将RT-DETR默认的CIoU损失函数修改成inner_IoU、inner_GIoU、inner_DIoU、inner_CI...
特别是在标注质量较差的数据集上,Wise-IoU相对其他边界框损失函数的表现更为出色。 计算效率高 尽管Wise-IoU引入了额外的计算成本(主要集中在聚焦系数的计算和IoU损失的均值统计上),但在实验条件相同时,由于没有对纵横比进行计算,Wise-IoU的计算速度反而比某些其他边界框损失函数更快。 实际应用与优化策略 替换损失函...
当IoU小于一个下限阈值 d 时,损失为0; 当IoU大于一个上限阈值 u 时,损失为1; 而当IoU处于 d 和 u 之间时,损失是一个根据IoU值线性递增的函数。 这样的设计允许损失函数在一定区间内对IoU值敏感,从而能够更专注于那些预测边界框与真实边界框重叠度中等的样本,即既不是太难也不是太容易的样本。这有助于模...
在此基础上,我们提出了一种基于 MPDIoU 的边界框回归损失函数,称为 LMPDIoU 。 实验结果表明,MPDIoU 损失函数适用于在 PASCAL VOC、MS COCO 和 IIIT5k 上训练的最先进的实例分割(例如 YOLACT)和对象检测(例如 YOLOv7)模型优于现有的损失函数。
边界框回归采用欧氏距离作为距离度量的损失函数 边界值法,一.方法简介1.定义:边界值分析法就是对输入或输出的边界值进行测试的一种黑盒测试方法。通常边界值分析法是作为对等价类划分法的补充,帮助从等价类中选取出更具代表性,或者容易出问题的数据进行测试,这种情况下
具体来说,为了获取边界框预测的不确定性,研究员首先将边界框预测和基本 ground truth 边界框分别建模为高斯分布(Gaussian distribution)和狄拉克 δ 函数(Dirac delta function)。而新提出的边界框回归损失则被定义为预测分布和基本 ground truth 分布之间的 KL 距离。
具体来说,为了获取边界框预测的不确定性,研究员首先将边界框预测和基本 ground truth 边界框分别建模为高斯分布(Gaussian distribution)和狄拉克 δ 函数(Dirac delta function)。而新提出的边界框回归损失则被定义为预测分布和基本 ground truth 分布之间的 KL 距离。
本文在CIoU边界框损失函数的基础上提出一种改进的边界框损失函数,解决了CIoU损失函数求导过程中由边界框宽高比带来的梯度爆炸问题和模型提前退化的问题,并且引入重叠区域与目标框的宽高关系和中心点之间的归一化距离作为附加的惩罚项,提高了模型的检测精度和收敛速度,这种损失函数称为BCIoU(Better CIoU)。