实时性要求:在一些实时场景下,例如自动驾驶和智能监控,目标检测和分割算法需要在极短的时间内完成处理,因此需要更高效的算法和硬件支持。 数据标注成本:目标检测和分割算法通常需要大量标注数据进行训练,然而数据标注的成本往往非常昂贵和耗时。 未来,我们可以期待深度学习技术在目标检测、语义分割和实例分割领域继续取得突破...
1)Faster R-CNN:是一种基于深度神经网络的目标检测模型,它通过在区域提议网络(Region Proposal Network, RPN)中引入锚点来提高检测速度,同时采用了RoI Pooling层来实现不同大小的目标检测。 2)YOLO(You Only Look Once):是一种基于单阶段目标检测算法的模型,它将目标检测任务转化为一个回归问题,通过卷积神经网络预...
作为计算机视觉的一个重要分支,目标检测的任务是在一幅图像或视频中找到目标类别以及目标位置。与图像分类不同,目标检测侧重于物体搜索,被检测目标必须有固定的形状和轮廓;而图像分类可以是任意目标包括物体、属性和场景等。目标检测已在人脸识别和自动驾驶领域取得了非常显著的效果,经典的检测模型有YOLOV3、SSD和Faster ...
目标跟踪,是指在特定场景跟踪某一个或多个特定感兴趣对象的过程。传统的应用就是视频和真实世界的交互,在检测到初始对象之后进行观察。现在,目标跟踪在无人驾驶领域也很重要,例如 Uber 和特斯拉等公司的无人驾驶。 根据观察模型,目标跟踪算法可分成 2 类:生成算法和判别算法。 生成算法使用生成模型来描述表观特...
鉴于CNN 在图像分类和目标检测方面的优势,它已成为计算机视觉和视觉跟踪的主流深度模型。 一般来说,大规模的卷积神经网络既可以作为分类器和跟踪器来训练。具有代表性的基于卷积神经网络的跟踪算法有全卷积网络跟踪器( FCNT )和多域卷积神经网络( MD Net )。
目标检测(object detection) 在目标定位中,通常只有一个或固定数目的目标,而目标检测更一般化,其图像中出现的目标种类和数目都不定。因此,目标检测是比目标定位更具挑战性的任务。 (1) 目标检测常用数据集 PASCAL VOC包含20个类别。通常是用VOC07和VOC12的trainval并集作为训练,用VOC07的测试集作为测试。
实例分割(上图右)其实就是目标检测和语义分割的结合。相对目标检测的边界框,实例分割可精确到物体的边缘;相对语义分割,实例分割需要标注出图上同一物体的不同个体(羊1,羊2,羊3...) 目前常用的实例分割算法是Mask R-CNN。 Mask R-CNN 通过向 Faster R-CNN 添加一个分支来进行像素级分割,该分支输出一个二进制...
全景分割的目标是将图像中的每一个物体全部进行分割检测,包括背景。因此,全景分割的结果通常比语义分割和实例分割更为详细和全面。 全景分割与语义分割的关系全景分割和语义分割之间存在一定的联系。在全景分割中,通常首先使用语义分割技术对图像中的对象进行分类和初步分割,然后再对同一类别的不同实例进行区分。因此,...
以语义分割和实例分割为代表的图像分割技术在各领域都有广泛的应用,例如在无人驾驶和医学影像分割等方面。应用示例如下图所示: 语义分割在无人驾驶中的应用 语义分割在OCT眼底视网膜图像分层识别中的应用 作为目标检测的更进阶图像处理任务,语义分割和实例分割对卷积网络的架构涉及提出了更高的要求。本节笔者就和大家梳...
实例分割同时利用目标检测和语义分割的结果,通过目标检测提供的目标最高置信度类别的索引,将语义分割中目标对应的Mask抽取出来。实例分割顾名思义,就是把一个类别里具体的一个个对象(具体的一个个例子)分割出来。举例来说,如果一张照片中有多个人,对于语义分割来说,只要将所由人的像素都归为一类,但是实例分割还要...