解函数fx=x(x-1)(x-2)……(x-100)=(x-1)x(x-2)……(x-100)则f'(x)=[(x-1)x(x-2)……(x-100)]'=(x-1)'x(x-2)……(x-100)+(x-1)×[(x-1)x(x-2)……(x-100)]'=1×x(x-2)……(x-100)+(x-1)×[(x-1)x(x-2)……(x-100)]'即f'(x)=1×1*(1-2)...
解析 f(x)的最高次项是x^(n+1),其余项的次数均低于(n+1),n+1阶求导后均为0x^(n+1)一阶导数=(n+1)x^nx^(n+1)二阶导数=(n+1)nx^(n-1)...x^(n+1)n+1阶导数=(n+1)!x^(1-1)=(n+1)!∴f(x)=x(x-1)(x-2)...(x-n)的n+1阶导函数=(n+1)!
解函数fx=x(x-1)(x-2)……(x-100)=(x-1)x(x-2)……(x-100)则f'(x)=[(x-1)x(x-2)……(x-100)]'=(x-1)'x(x-2)……(x-100)+(x-1)×[(x-1)x(x-2)……(x-100)]'=1×x(x-2)……(x-100)+(x-1)×[(x-1)x(x-2)……(x-100)]'即f'(x)=1×1*(1-2)...
解函数fx=x(x-1)(x-2)……(x-100)=(x-1)x(x-2)……(x-100)则f'(x)=[(x-1)x(x-2)……(x-100)]'=(x-1)'x(x-2)……(x-100)+(x-1)×[(x-1)x(x-2)……(x-100)]'=1×x(x-2)……(x-100)+(x-1)×[(x-1)x(x-2)…...
高阶导数的求解。
两边对x求导 f'(x)/f(x)=1/x+1/(x-1)+1/(x-2)+...+1/(x-2009)f'(x)=[1/x+1/(x-1)+1/(x-2)+...+1/(x-2009)]*[x(x-1)(x-2)...(x-2009)]=(x-1)(x-2)...(x-2009)+[1/(x-1)+1/(x-2)+...+1/(x-2009)]*[x(x-1)(x-2)...(x-2009)...
思路: f(x)最高次项为 x^4,而4阶导数使幂次小于4的项的导数都为0,所以 f'<4>(x) = 4! = 24 过程:具体参考下图
设fx=(x-1)(x-2)(x-3)(x-4)则fx的4阶导数 思路: f(x)最高次项为 x^4,而4阶导数使幂次小于4的项的导数都为0,所以 f'(x) = 4! = 24过程:具体参考下图
f(x)定义域为x>0 f'(x)=1+1/x^2-2m/x=(1/x-m)^2+1-m^2 当1-m^2>=0时,即-1=<m<=1时,f'(x)>=0,函数在x>0单调增;当1-m^2<0时,即m>1或m<-1时,分两种情况:m<-1时,f(x)=1+1/x^2-2m/x>0, 因此函数在x>0单调增;m>1时,由f'(x)=0得极值点...
2013-01-22 设函数fx =2x次方+1分之2x次方-1 x属于R (1)... 10 2015-11-09 已知fx=3x+1/x+2,指出fx的单调区间并证明 2014-11-02 已知函数fx=1/x²+1。 判断函数fx在区间(... 2018-01-29 已知函数fx=x2-x分之1+2,判断函数fx在一到正无穷上... 2011-12-06 已知函数fx=x+x...