随着语言生成模型 [24]、[25] 的兴起,研究人员专注于利用大语言模型 (LLM) 中嵌入的先验知识来开发通用且高度推理的 VLM。利用 LLM 中的指令调整技术 [26],当前的视觉语言大模型 (VLLM) [27] 可以处理通用指令并生成符合人类偏好的响应。具体而言,这些 VLLM(如图所示)使用视觉编码器来 patch 化视觉...
多模态视觉语言模型(VLM) 已成为计算机视觉和自然语言处理交叉领域的一项变革性技术,使机器能够通过视觉和文本模态感知和推理世界。例如,CLIP[209]、Claude [10] 和GPT-4V[273] 等模型在视觉和文本数据上表现出强大的推理和理解能力,并在零样本分类 [107] 上击败经典的单模态视觉模型。尽管它们在研究方面取得快速进...
这种模型将语言和感知相结合,使其能够看到并说话,使其在视觉对话、图像描述和零样本图像分类等任务上变得熟练。另一个显著的模型,即 PaLM-E,将先进的语言和视觉模型相结合,例如 PaLM 和 ViT-22B。它们在视觉任务如目标检测和场景分类方面表现出色,同时展示出在语言任务如生成代码和解决数学方程方面的熟练程度。PaLM-...
大型视觉-语言模型(LVLMs)在各种多模态下游任务中取得了显著成功,并展示了很有前途的能力,如文本生成图像 [91], [102], [104]、视觉问答 [2], [61], [115] 等等,这得益于数据量、计算资源和模型参数数量的增加。通过进一步利用大型语言模型(LLMs)...
【导读】武汉大学等发布了一篇大型视觉语言模型(LVLMs)安全性的综述论文,提出了一个系统性的安全分类框架,涵盖攻击、防御和评估,并对最新模型DeepSeek Janus-Pro进行了安全性测试,发现其在安全性上存在明显短板。 随着GPT-4o与Qwen-VL等...
近年来,随着大型模型的显著发展,大型视觉-语言模型(LVLMs)在各种多模态理解和推理任务中展示了卓越的能力。相比于传统的大型语言模型(LLMs),由于更接近多资源的现实世界应用和多模态处理的复杂性,LVLMs 展示了巨大的潜力和挑战。然而,LVLMs 的脆弱性相对较少被探索,在日常使用中可能存在潜在的安全风险。在本文中,...
近来,多模态大语言模型(Multimodal Large Language Model,MLLM)受到广泛关注,成为一个新兴的研究热点。MLLM通常以大语言模型(Large Language Model,LLM)为基础,融入其它非文本的模态信息,完成各种多模态任务。相比于常规的多模态模型,MLLM涌现出一些令人惊叹的新能力,例如基于图片进行诗文创作和OCR-Free的数学推理等。
1、大型语言模型(Large Language Models):如BERT、GPT-3、PaLM等,主要应用于自然语言处理任务。 2、视觉Transformer模型:如ViT、Swin Transformer等,主要应用于计算机视觉任务。 3、视觉-语言模型(Vision-Language Models):如CLIP、ALIGN等,通过跨模态对比学习实现视觉与语言的对齐。
近年来,随着大型模型的显著发展,大型视觉-语言模型(LVLMs)在各种多模态理解和推理任务中展示了卓越的能力。相比于传统的大型语言模型(LLMs),由于更接近多资源的现实世界应用和多模态处理的复杂性,LVLMs 展示了巨大的潜力和挑战。然而,LVLMs 的脆弱性相对较少被探索,在日常使用中可能存在潜在的安全风险。在本文中,...
大语言模型引导的视觉理解:在语言模型的协助下,将复杂视觉问题拆解为统一的逻辑链,并分步解决问题。其实这类方法并非最近才出现:至少在2017年,就出现了使用LSTM拆分问题并调用视觉模块的尝试[13]。只是大语言模型的出现,使得这一方法论的通用性大大增强。最近出现的一系列工作,其共同特点是使用GPT将文本问题转化为可...