【简答题】一个口袋中装有2个白球和3个红球,每次从袋中摸出两个球,若摸出的两个球颜色相同为中奖,否则为不中奖,则中奖的概率为___. 查看完整题目与答案 【简答题】招领启事 昨天晚上七点半,本人路过学校篮球168时拾到一件男夹克,口袋内装有人民币若干元,牡丹卡一个,游泳证一个,钥169一串,洗衣...
解析 样本点总数a8B/ZyPHzYd5Zp55wiG7ng==. 设Yn3GgEZev6SOu2r4v1WnCw==表示“取得2个白球及2个黑球”,则Yn3GgEZev6SOu2r4v1WnCw==所包含的样本点的个数为8IuYKfYM22Hpz9TuzqmWPL/+2z4KEpcE86uocOUgGvk=,所以 CW7w/wmgGx3Izw0bapDnfU7JMD9KjpUj+kxWpcVkv+Q=...
答案:全是同色球的概率为3 44,全是异色球的概率为3 11。 结果二 题目 在放有5个红球、4个黑球、3个白球的袋中,任意取出3个球,分别求出3个全是同色球的概率及全是异色球的概率. 答案 【解答】解:由题意知本题是一个古典概型,∵试验包含的事件是从12个球中任取3个,共有C123种不同的取法,而满...
袋中有3个白球和5个黑球,从袋中不放回地取4个球,则取到2个白球及2个黑球的概率为A.5/8B.3/7C.9/25D.3/8的答案是什么.用刷刷题APP,拍照搜索答疑.刷刷题(shuashuati.com)是专业的大学职业搜题找答案,刷题练习的工具.一键将文档转化为在线题库手机刷题,以提高学习效率,是学习的
次取到白球”, “第 次取到黑球” (1)每次均从6个球中取球,每次取球的结果互不影响,所以 . (2)问题相当于“从3个白球,2个黑球中取一次球,求取到黑球的概率”, 所以,所求概率 . (3)有放回的依次取出3个球,则取到黑球次数 的可能取值为 ...
袋中装有大小相同的10个球,其中5个白球,3个红球,2个黑球,现在依次从中取出3个球.(1)求取出的3个球不是同一种颜色的概率;(2)求取出的3个球中所含红球的个数ξ的分布列及期望
由题意知本题是一个古典概型,∵试验包含的事件是从12个球中任取3个,共有C123种不同的取法,而满足条件3个球全是同色球包含全是黑球,全是红球,全是白球,共有C53+C43+C33种结果,∴全是同色球的概率P=C35+C34+C33C312=344,∵3个球全是异色球共有C51C41C31∴全是异色球的概率为P=C13...
在放有5个红球、4个黑球、3个白球的袋中,任意取出3个球,分别求出3个全是同色球的概率及全是异色球的概率. 扫码下载作业帮搜索答疑一搜即得 答案解析 查看更多优质解析 解答一 举报 由题意知本题是一个古典概型,∵试验包含的事件是从12个球中任取3个,共有C123种不同的取法,而满足条件3个球全是同色球...
在放有5个红球、4个黑球、3个白球的袋中,任意取出3个球,分别求出3个全是同色球的概率及全是异色球的概率. 扫码下载作业帮搜索答疑一搜即得 答案解析 查看更多优质解析 解答一 举报 由题意知本题是一个古典概型,∵试验包含的事件是从12个球中任取3个,共有C123种不同的取法,而满足条件3个球全是同色球...
在放有5个红球、4个黑球、3个白球的袋中,任意取出3个球,分别求出3个全是同色球的概率及全是异色球的概率. 试题答案 在线课程 分析:由题意知本题是一个古典概型,试验包含的事件是从12个球中任取3个,共有C123种不同的取法,而满足条件3个球全是同色球包含全是黑球,全是红球,全是白球,3个球全是异色...