K-means聚类算法是一种无监督的学习方法,通过对样本数据进行分组来发现数据内在的结构。K-means的基本思想是将n个实例分成k个簇,使得同一簇内数据相似度高而不同簇之间数据相似度低。 算法流程 K-means的算法过程如下: 优点 K-means优点: ①是解决聚类问题的一种经典算法,简单、快速。 ②对处理大数据集,该算法...
原始K-means算法最开始随机选取数据集中K个点作为聚类中心, 而K-means++按照如下的思想选取K个聚类中心: 假设已经选取了n个初始聚类中心(0<n<K),则在选取第n+1个聚类中心时:距离当前n个聚类中心越远的点会有更高的概率被选为第n+1个聚类中心。 在选取第一个聚类中心(n=1)时同样通过随机的方法。 可以说...
cosθ=A⋅B||A||⋅||B||=∑i=1nAiBi∑i=1n(Ai)2∑i=1n(Bi)2其中,和Ai和Bi分别代表向量 A 和 B 的各分量 。 2. K-Means算法步骤 输入:样本集{x1,x2,…,xm} 聚类簇数k 输出:簇划C={C1,C2,…,Ck} 随机初始化k个点作为簇质心; 将样本集中的每个点分配到一个簇中; 计算每个点...
⑤ 在所有样本遍历完后, 遍历K聚簇中心,计算这K个簇心向量的均值,记录当前均值坐标,当做下一次聚类的簇心 ⑥ 比较 新聚蔟中心 == 旧聚蔟中心?; ⑦当 ⑥ 成立时,算法结束;反之, 重复执行前面6步,直至聚蔟中心不在发生变化,算法结束 3. 示例 假设有如下样本点 我要将上面10个样本点分成三类, 那么 K=3,...
K-Means聚类算法步骤 K-Means聚类步骤是一个循环迭代的算法,具体·步骤如下:1、先随机选取K个对象作为初始的聚类中心,随机选择K个初始中心点;2、计算每个对象与各个种子聚类中心之间的距离,按照距离初始中心点最小的原则,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。3、...
聚类算法之K-Means K-Means是常用的聚类算法,与其他聚类算法相比,其时间复杂度低,聚类的效果也还不错,这里简单介绍一下k-means算法,下图是一个手写体数据集聚类的结果。 基本思想 k-means算法需要事先指定簇的个数k,算法开始随机选择k个记录点作为中心点,然后遍历整个数据集的各条记录,将每条记录归到离它最近...
K-means算法是一种聚类算法,所谓聚类,即根据相似性原则,将具有较高相似度的数据对象划分至同一类簇,将具有较高相异度的数据对象划分至不同类簇。聚类与分类最大的区别在于,聚类过程为无监督过程,即待处理数据对象没有任何先验知识,而分类过程为有监督过程,即存在有先验知识的训练数据集。 K-means算法中的 K 代...
kmeans是属于无监督学习的数据聚类算法,根据点与点之间的距离推测每个点属于哪个中心,常用计算距离的方式有:余弦距离、欧式距离、曼哈顿距离等,本文以欧式距离为例。图1假设每个点的维度是n,即每个点有n个特征维度,计算这些点数据到数据中心A、B、C的距离,从而将每个数据归类到A或B或C。欧式距离公式:假设1...
K-Means算法,也被称为K-平均或K-均值算法,是一种广泛使用的聚类算法。K-Means算法是聚焦于相似的无监督的算法,以距离作为数据对象间相似性度量的标准,即数据对象间的距离越小,则它们的相似性越高,则它们越有可能在同一个类簇。之所以被称为K-Means是因为它可以发现k个不同的簇,且每个簇的中心采用簇中所含...
Kmeans是最经典的聚类算法之一,它的优美简单、快速高效被广泛使用。 Kmeans算法描述 输入:簇的数目k;包含n个对象的数据集D。 输出:k个簇的集合。 方法: 从D中任意选择k个对象作为初始簇中心; repeat; 根据簇中对象的均值,将每个对象指派到最相似的簇; ...