其中比较具有代表性的有:自由基衰老学说、非酶糖基化衰老学说、基因调控学说、线粒体学说等。此外,与衰老机理相关的理论学说还有很多,虽然来自不同的研究层面,但不同的衰老机理并不是完全对立的,它们能够进行互相补充和验证。正是因为机理研究的路线错综复杂,关于皮肤衰老的真正原因,至今仍然是一个未解之谜,需...
此外,在光老化皮肤中,同样存在DNA损伤和端粒缩短的现象,其中可能以端粒损伤为起始反应,再结合UV所致的重要调节基因的共同损伤而加速皮肤的老化。研究表明,紫外线能够加速端粒缩短,同时,光产物环丁烷嘧啶二聚体及和光诱导的活性氧簇分别作用于胸腺嘧啶和鸟嘌呤残基,从而造成端粒袢结构裂解和DNA双链断裂,从而加速老化进程...
研究表明,紫外线能够加速端粒缩短,同时,光产物环丁烷嘧啶二聚体及和光诱导的活性氧簇分别作用于胸腺嘧啶和鸟嘌呤残基,从而造成端粒袢结构裂解和DNA双链断裂,从而加速老化进程[12]。 虽然端粒从细胞层面解释了内源性衰老的原因,但其只是细胞衰老机理的一个重要组成部分,与细胞、DNA相关的机制研究还有很多方向可以探索。
此外,在光老化皮肤中,同样存在DNA损伤和端粒缩短的现象,其中可能以端粒损伤为起始反应,再结合UV所致的重要调节基因的共同损伤而加速皮肤的老化。研究表明,紫外线能够加速端粒缩短,同时,光产物环丁烷嘧啶二聚体及和光诱导的活性氧簇分别作用于胸腺嘧啶和鸟嘌呤残基,从而造成端粒袢结构裂解和DNA双链断裂,从而加速老化进程...
在细胞水平上,皮肤老化也带来了一些功能性的变化,包括角质形成细胞增殖能力下降,角质层形成减少,保护性屏障再生能力下降,脂质合成减少等[2]。 自由基氧化 在现有的十几种衰老机理学说中,自由基学说是具有最大影响力的学说之一。 1956年,美国学者Denham Harman首次提出自由基衰老学说,该学说认为外源和内源产生的自由基...
解析 高聚物及其材料在加工、贮存和使用过程中,由于长期受到化学、物理(热、光、电、机械)和生物因素的综合影响,发生裂解或交联而导致性能变坏的现象称为老化。老化机理是链的裂解或交联。在高聚物中加入抗氧剂(如芳胺)、光稳定剂(如炭黑、钛粉等光屏蔽剂和紫外线吸收剂)。
1. 阳极的老化机理 1)SEI膜的形成及稳定增长 许多研究人员认为,石墨阳极上的主要老化因素是在阳极表面的固体电解质界面(Solid electrolyte interphase,SEI)变化[2, 3]。如图2所示,SEI膜在电极表面附近形成,以保护阳极免受可能的腐蚀,并防止电解质在首次充电期间减少[4, 5]。然而,SEI是不稳定的,因为锂离子电池经...
正确答案:指在多次变形条件下,使橡胶大分子发生断裂或者氧化,结果使橡胶的物性及其他性能变差,最后完全丧失使用价值,这种现象称为疲劳老化。 老化机理主要有机械破坏理论:认为橡胶的疲劳老化是有所施加到橡胶上的机械应力使其结构及性能产生变化,以至最后丧失使用价值。在该过程中的化学反应只是影响疲劳过程的一个因素。
液体电解质的老化机理 相关知识点: 试题来源: 解析 答:新油在与空气接触的过程中逐渐吸收氧气,初期吸收的氧气将与油中的不饱和碳氢化合物起化学反风,形成饱和的化合物,这段时期称为A期此后油再吸收氧气,就生成稳定的油的氧化物和低分子量的有机酸这段时期称为B期此后油再进进一步氧化,油中酸性产物的浓度达...
图1 锂离子电池的老化机理示意图[1] 1. 阳极的老化机理 1)SEI膜的形成及稳定增长 许多研究人员认为,石墨阳极上的主要老化因素是在阳极表面的固体电解质界面(Solid electrolyte interphase,SEI)变化[2, 3]。如图2所示,SEI膜在电极表面附近形成,以保护阳极免受可能的腐蚀,并防止电解质在首次充电期间减少[4, 5]。