粒子群优化算法(Particle Swarm Optimization,PSO)是进化计算的一个分支,是一种模拟自然界的生物活动的随机搜索算法。 PSO模拟了自然界鸟群捕食和鱼群捕食的过程。通过群体中的协作寻找到问题的全局最优解。它是1995年由美国学者Eberhart和Kennedy提出的,现在已经广泛应用于各种工程领域的优化问题之中。 1.1.1 思想来源...
1995年,受到鸟群觅食行为的规律性启发,James Kennedy和Russell Eberhart建立了一个简化算法模型,经过多年改进最终形成了粒子群优化算法(Particle Swarm Optimization, PSO) ,也可称为粒子群算法[1]。 (2)特点 粒子群算法具有收敛速度快、参数少、算法简单易实现的优点(对高维度优化问题,比遗传算法更快收敛于最优解...
粒子群优化(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,由Eberhart和Kennedy在1995年提出。它受到鸟群觅食行为的启发,通过模拟鸟群或鱼群等生物群体的社会行为来进行问题求解。PSO算法是由James Kennedy和Russell Eberhart在1995年首次提出的。它的灵感来源于对鸟群捕食行为的观察,特别是飞鸟集群...
一、粒子群算法的概念 粒子群优化算法(PSO:Particle swarm optimization) 是一种进化计算技术(evolutionary computation)。源于对鸟群捕食的行为研究。粒子群优化算法的基本思想:是通过群体中个体之间的协作和信息共享来寻找最优解. PSO的优势:在于简单容易实现并且没有许多参数的调节。目前已被广泛应用于函数优化、神经网...
粒子群优化算法(Particle Swarm optimization,PSO)又翻译为粒子群算法、微粒群算法、或微粒群优化算法。是通过模拟鸟群觅食行为而发展起来的一种基于群体协作的随机搜索算法。 粒子群优化算法是群集智能 (Swarm intelligence, SI) 的一种。它可以被纳入多主体优化系统(Multiagent Optimization System, MAOS)。粒子群优化...
应用:在粒子群优化算法的测试和调整过程中,通过监控NCBPE值可以评估不同参数设置(如惯性权重、学习因子等)对算法性能的影响,进而进行优化。 收缩因子法 收缩因子法控制系统行为最终收敛,且可以有效搜索不同区域,该法能得到较高质量的解。 2. 邻域拓扑结构 ...
粒子群优化算法的基本原理 粒子群优化(Particle Swarm Optimization,PSO)算法是1995年由美国学者Kennedy等人提出的,该算法是模拟鸟类觅食等群体智能行为的智能优化算法。在自然界中,鸟群在觅食的时候,一般存在个体和群体协同的行为。有时鸟群分散觅食,有时鸟群也全体觅食。在每次觅食的过程中,都会存在一些搜索能力强的鸟...
粒子群优化算法对于鸟群的模拟是按照如下的模式进行的:假设一群鸟在空中搜索食物,所有鸟知道自己当前距离食物有多远(这里的远近会用一个值来衡量,适应度值),那么每只鸟最简单的搜索策略就是寻找距离目前距离食物最近的鸟的周围空间。因此,在粒子群算法中,每个粒子都相当于一只鸟,每个粒子有一个适应度值,还有一个速...
GQPSO算法是基于粒子裙优化算法和量子计算的原理而提出的,它采用了一种全新的粒子编码和演化方式,通过模拟粒子在量子力学中的行为进行搜索和优化。GQPSO算法的原理如下: 1. 量子位表示 在GQPSO算法中,每个粒子被表示为一个量子位,根据其在搜索空间中的位置,每个粒子的量子位可以被编码为一个二进制字符串。这种量子...
LinWPSO 用线性递减权重粒子群优化算法求解无约束优化问题 SAPSO 用自适应权重粒子群优化算法求解无约束优化问题 RandWPSO 用随机权重粒子群优化算法求解无约束优化问题 LnCPSO 用学习因子同步变化的粒子群优化算法求解无约束优化问题 AsyLnCPSO 用学习因子异步变化的粒子群优化算法求解...