51CTO博客已为您找到关于CNN经典结构的相关内容,包含IT学习相关文档代码介绍、相关教程视频课程,以及CNN经典结构问答内容。更多CNN经典结构相关解答可以来51CTO博客参与分享和学习,帮助广大IT技术人实现成长和进步。
本文主要介绍2012-2015年的经典CNN结构,从AlexNet,ZFNet,OverFeat到VGG,GoogleNetv1-v4,ResNetv1-v2。 AlexNet 贡献:ILSVRC2012冠军,展现出了深度CNN在图像任务上的惊人表现,掀起CNN研究的热潮,是如今深度学习和AI迅猛发展的重要原因。ImageNet比赛为一直研究神经网络的Hinton提供了施展平台,AlexNet就是由Hinton...
51CTO博客已为您找到关于经典CNN结构模型的相关内容,包含IT学习相关文档代码介绍、相关教程视频课程,以及经典CNN结构模型问答内容。更多经典CNN结构模型相关解答可以来51CTO博客参与分享和学习,帮助广大IT技术人实现成长和进步。
dropout是指在深度学习网络的训练过程中,对于神经网络单元,按照一定的概率(AlexNet是50%,这种情况下随机生成的网络结构最多)将其暂时从网络中丢弃(保留其权值),不再对前向和反向传输的数据响应。注意是暂时,对于随机梯度下降来说,由于是随机丢弃,故而相当于每一个mini-batch都在训练不同的网络,drop out可以有效防止...
CNN结构演变总结 在这个系列将按照以下三个部分对CNN结构演变进行总结。 一、经典模型,对AlexNet、VGG、NIN、GoogLeNet和Inception系列、ResNet、WRN和DenseNet这些模型的结构设计部分进行总结。 二、轻量化模型,对MobileNet系列、ShuffleNet系列、SqueezeNet和Xception等轻量化模型总结介绍轻量化的原理,设计原则。
【深度学习算法原理】经典CNN结构——AlexNet 1. 概述 AlexNet卷积神经网络在CNN的发展过程中起着非常重要的作用,AlexNet是由加拿大多伦多大学的Alex Krizhevsky等人提出。 2. 算法的基本思想 2.1. AlexNet的网络结构 AlexNet的网络结构如下图所示: 抛开两个GPU的结构不说,这主要是因为受当时的计算环境的影响。对于...
在论文笔记:CNN经典结构1中主要讲了2012-2015年的一些经典CNN结构。本文主要讲解2016-2017年的一些经典CNN结构。 CIFAR和SVHN上,DenseNet-BC优于ResNeXt优于DenseNet优于WRN优于FractalNet优于ResNetv2优于ResNet,具体数据见CIFAR和SVHN在各CNN论文中的结果。ImageNet上,SENet优于DPN优于ResNeXt优于WRN优于ResNet和De...
在论文笔记:CNN经典结构1中主要讲了2012-2015年的一些经典CNN结构。本文主要讲解2016-2017年的一些经典CNN结构。 CIFAR和SVHN上,DenseNet-BC优于ResNeXt优于DenseNet优于WRN优于FractalNet优于ResNetv2优于ResNet,具体数据见CIFAR和SVHN在各CNN论文中的结果。ImageNet上,SENet优于DPN优于ResNeXt优于WRN优于ResNet和De...
本文主要介绍2012-2019年的一些经典CNN结构,从Lenet,AlexNet,VGG,GoogleNet,ResNet, Resnext, Densenet, Senet, BAM, CBAM, genet, sknet, mobilenet。以下附上论文链接。另外,使用pytorch实现了大部分的模型,并在CIFAR数据集上进行测试,可在github链接中查看具体实现代码细节。如果对大家有帮助,欢迎给个star。:smile...
通过设计一个稀疏网络结构,但是能够产生稠密的数据,既能增加神经网络表现,又能保证计算资源的使用效率。谷歌提出了最原始Inception的基本结构: 该结构将CNN中常用的卷积(1x1,3x3,5x5)、池化操作(3x3)堆叠在一起(卷积、池化后的尺寸相同,将通道相加),一方面增加了网络的宽度,另一方面也增加了网络对尺度的适应性。